Stochastik und Markovketten

Größe: px
Ab Seite anzeigen:

Download "Stochastik und Markovketten"

Transkript

1 1 Zentrum für Bioinformatik der Universität des Saarlandes WS 22/23 2 Warum Stochastik? Viele Fragestellungen der Bioinformatik lassen sich auch heutzutage gar nicht oder nicht schnell genug exakt beantworten Oft kann man aber Aussagen über die wahrscheinlichsten Antworten auf solche Fragen machen Das nötige Wissen liefert uns die Wahrscheinlichkeitstheorie, die auch Stochastik genannt wird 1

2 3 Was brauchen wir dafür? Um über Wahrscheinlichkeiten reden zu können, brauchen wir eine Menge von Ereignissen (was ist wie wahrscheinlich?) ein Maß für die Wahrscheinlichkeit eines Ereignisses (wie wahrscheinlich ist etwas?) einige Rechenregeln für diese Wahrscheinlichkeiten (was mache ich mit den Wahrscheinlichkeiten?) Beispiel: Werfen eines (fairen) Würfels Jede gewürfelte Zahl stellt ein Ereignis dar Ereignisse = {1..6} Jede Zahl ist gleich wahrscheinlich! Wenn wir sehr oft würfeln sollte daher jede Zahl in ca. 1/6. der Fälle gewürfelt werden! (1/6.166) 4 1 Würfe 1 Würfe,4,35,3,2 Anteil,2 Anteil,5,5 1 Würfe 1 Würfe,2,2 Anteil Anteil,5,5 2

3 5 Ein wenig genauer Zuerst definieren wir uns eine Menge E von sog. Elementarereignissen (z.b. die Menge E={1..6} für die Seiten des Würfels) Wir definieren dann die Menge der Ereignisse F folgendermaßen: 1. E F (alle Elementarereignisse sind Ereignisse) 2. Wenn F und F, dann liegen auch,, c und c in F 3. ( technische Voraussetzung an unendliche Summen und Produkte in F) Ein Ereignis tritt ein, wenn ein in ihm enthaltenes Elementarereignis eintritt 6 Unabhängige Ereignisse: und ) = ) ) Zusammengesetzte Ereignisse : ) = e (A E) e) Beispiel: wir werfen eine faire Münze zwei mal hintereinander. Elementarereignisse (Z=Zahl, K=Kopf): E = {ZZ, ZK, KZ, KK} Zwei mögliche Ereignisse aus F: 1. Α={ZK, KZ} (genau ein mal Zahl geworfen) 2. Β={KK, ZK, KZ} (mindestens ein mal Kopf geworfen)» Z) = K) = 1/2» Α) = 1/21/2 + 1/21/2 = 1/2» Β) = 3/4 3

4 7 Bedingte Wahrscheinlichkeiten Was passiert, wenn zwei Ereignisse sich gegenseitig beeinflussen? Angenommen, Β beeinflusst Α. Wenn Β eintritt, dann gilt für die Wahrscheinlichkeit von Α der Satz von Bayes: A B) = B A) A) B) Wenn {B k k=1..n} eine Partition von F ist, d.h. jedes Ereignis in F liegt in genau einem B i, dann gilt zusätzlich: A Bi) Bi) Bi A) = n A Bk) Bk) k = 1 8 Bedingte Wahrscheinlichkeiten, Beispiel Der in Deutschland üblicherweise verwendete AIDS-Test ELISA hat folgende typische Eigenschaften: Sensitivität: bei einem an AIDS erkrankten Patienten erkennt der Test in ca % der Fälle die Krankheit richtig Spezifizität: ist der Patient nicht erkrankt, erkennt der Test dies in ca % der Fälle In Deutschland sind ca..1 % der 2-3 jährigen Männer, die keiner Risikogruppe angehören, an AIDS erkrankt 4

5 9 Bedingte Wahrscheinlichkeiten, Beispiel Nach dem Satz von Bayes ergibt sich damit: pos HIV ) HIV ) HIV pos) = pos HIV ) HIV ) + pos nohiv ) nohiv ) = Also: ein 2-3 jähriger nicht-risikopatient, der positiv getestet wird, ist nur mit einer Wahrscheinlichkeit von 5 % wirklich erkrankt! In neueren Untersuchungen konnten ca. 95 % der befragten Ärzte die Ergebnisse ähnlicher Tests nicht korrekt interpretieren. 1 Zufallsvariablen Eine Funktion X, die jedem Elementarereignis in E eine reelle Zahl zuordnet, nennt man Zufallsvariable Beispiel: werfe eine Münze 3 mal hintereinander. Mögliche Zufallsvariablen: X1 = Wie oft fiel Zahl X2 = Wie oft fiel Kopf X3 = Wie oft fiel Kopf oder Zahl Für eine Zufallsvariable X und ein Elementarereignis e interessiert uns z.b. X=e). Im Beispiel: X1 = 3) = 1/8 X3 = 3) = 1 X3 = 1) = etc... 5

6 11 Erwartungswerte Sollen wir den Wert einer Zufallsvariablen X raten, ist die beste Schätzung der Erwartungswert E(X): E ( X ) = X ( e) e) e E Beispiel: Werfen eines fairen Würfels. E = {1..6} 1) =... = 6) = 1/6 X(e):=e E(X) = 1/6*( ) = 1/6 * 21 = Markovketten Ein stochastischer Prozess ist eine Menge von Zufallsvariablen {X(t) t T}. T kann man sich als den Beobachtungszeitraum vorstellen, t als den aktuellen Zeitpunkt. Markovketten sind stochastische Prozesse mit einem Kurzzeitgedächtnis. Beispiel: nehmen wir an, alle 5 Sekunden kommt ein Student in die Mensa. Heute gibt s nur C- oder Wahlessen. Um t =12.45 sind noch alle Schlangen leer. Es seien f C (t) und f W (t) die Anzahl an Studenten in der C- bzw. Wahlessenschlange zum Zeitpunkt t. f C )=f W )= Sind die Schlangen gleich lang, gehen 8 von 1 Studenten zum billigeren C- Essen f C +.5s)=f C )+1)=.8, f W +.5s)=f W )+1)=.2 Daher ist um t 1 =13. das C-Essen überfüllt, die W-Schlange aber noch leer. Nun siegt der Hunger über den Geiz: f C (t 1 +.5s)=f C (t 1 )+1)=.3 6

7 13 Ein wenig genauer... Für eine Markovkette brauchen wir: eine Menge von möglichen Zuständen S={S 1,,S n } für jeden Zeitpunkt t und für alle Zustände i, j die Wahrscheinlichkeit p ij (t), von Zustand i in Zustand j überzugehen P(t) = (p ij ) i=1 n, j=1, n (t) ist eine nn Matrix, die sogenannte Übergangsmatrix Betrachten wir nur diskrete Zeitschritte t, dann schreiben wir P n für P(n t) Es gilt: P (n) P (m) = P (n+m) (Matrizenprodukt!) Eine Markovkette heißt ergodisch, falls lim n P (n) = C, wobei C eine konstante nn Matrix ist. Also: eine Markovkette ist dann ergodisch, wenn sich die Übergangswahrscheinlichkeiten nach einiger Zeit nicht mehr ändern (d.h. sie haben sich auf ihren Endwert eingependelt) 14 Hidden Markov - Modelle Die Realität ist häufig ein wenig komplizierter... Oft können wir den Zustand der Markovkette nicht direkt beobachten, sondern nur irgendwelche Effekte, die mit einer gewissen Wahrscheinlichkeit in jedem Zustand auftreten können. So etwas bezeichnet man als Hidden-Markov- Modell Beispiel: in unserem Mensa-Modell können wir die eigentlichen Zustände (die Anzahl der Studenten) nicht bestimmen, wenn wir unten an der Schlange ankommen (wir können ja nicht sehen, wie viele oben noch warten). Wir können aber aus der Wartezeit gewisse Rückschlüsse auf die Länge der Schlange ziehen. 7

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Musterlösung zur 6. Übung

Musterlösung zur 6. Übung Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Hans-Peter Lenhof Dipl. Inform. Andreas Hildebrandt Programmierung II, SS 2003 Musterlösung zur 6. Übung Aufgabe 1: Faire Münzen (10 Punkte) Offensichtlich

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Discrete Probability - Übung

Discrete Probability - Übung F H Z > F A C H H O C H S C H U L E Z E N T R A L S C H W E I Z H T A > H O C H S C H U L E F Ü R T E C H N I K + A R C H I T E K T U R L U Z E R N A b t e i l u n g I n f o r m a t i k Discrete Probability

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt. 3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments

Mehr

Kapitel I Diskrete Wahrscheinlichkeitsräume

Kapitel I Diskrete Wahrscheinlichkeitsräume Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

2 STOCHASTISCHE GRUNDBEGRIFFE

2 STOCHASTISCHE GRUNDBEGRIFFE 2 STOCHASTISCHE GRUNDBEGRIFFE 2.4 Wahrscheinlichkeitsräume 1. Man vereinfache soweit wie möglich (AB A B): (a) (A B)(A B c ) (b) (A B)(B C) (c) (A B)(A c B)(A B c ) (d) (AB) (AB c ) (e) (A B)(A c B)(A

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2014 / 2015 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Stochastik Grundlagen

Stochastik Grundlagen Grundlegende Begriffe: Zufallsexperiment: Ein Experiment, das beliebig oft wiederholt werden kann. Die möglichen Ergebnisse sind bekannt, nicht jedoch nicht, welches Ergebnis ein einzelnes Experiment hat.

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel II - Wahrscheinlichkeitsraum Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Kapitel 12: Markov-Ketten

Kapitel 12: Markov-Ketten Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 21.01.2016 Kapitel 12: Markov-Ketten Ab jetzt betrachten wir stochastische Prozesse (X n ) n N0 mit 1. diskreter Zeit N 0 = {0,1,2,...},

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Grundbegrie der Wahrscheinlichkeitsrechnung

Grundbegrie der Wahrscheinlichkeitsrechnung Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Aufgabe 1 Ein Fahrzeugpark enthält 6 Fahrzeuge. Jedes Fahrzeug hat die Wahrscheinlichkeit p = 0.1 (bzw. p = 0.3), dass es kaputt geht. Pro Tag kann nur

Mehr

Elementare Wahrscheinlichkeitslehre

Elementare Wahrscheinlichkeitslehre Elementare Wahrscheinlichkeitslehre Vorlesung Computerlinguistische Techniken Alexander Koller 13. November 2015 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen?

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die

Mehr

Biometrieübung 2 Wahrscheinlichkeitsrechnung

Biometrieübung 2 Wahrscheinlichkeitsrechnung Biometrieübung 2 (Wahrscheinlichkeitsrechnung) - Aufgabe Biometrieübung 2 Wahrscheinlichkeitsrechnung Aufgabe 1. Kartenspiel Wie groß ist die Wahrscheinlichkeit, daß man aus einem Kartenspiel mit 52 Karten

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2006 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2006ss/ds2/ Sommersemester 2006 c Ernst W. Mayr 3. Einleitung Was bedeutet Zufall? Große Menge

Mehr

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,

Mehr

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Übungs-Blatt Wahrscheinlichkeitsrechnung BMT Biostatistik Prof. Dr. B. Grabowski Zu Aufgabe ) Ein bestimmtes Bauteil wird auf seine Zuverlässigkeit untersucht. Die technische Prüfung erfolgt dabei so:

Mehr

Zufallsvariablen. Erwartungswert. Median. Perzentilen

Zufallsvariablen. Erwartungswert. Median. Perzentilen Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 22. Januar 2010, 10:46 1 Zufallsvariablen Wenn ein Zufallsexperiment eine Zahl als Ergebnis liefert, nennt man diese

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

6.4 Poisson-Verteilung

6.4 Poisson-Verteilung 6.4 Poisson-Verteilung Sei {N t } t T eine Menge von Zufallsvariablen (ein stochastischer Prozeß ) mit folgenden Eigenschaften: V1: Zuwächse sind unabhängig, dh. die Zufallsvariablen N t+h N t und N t

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Wahrscheinlichkeitstheorie Agenda:

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler σ (X + Y) σ (Y) σ (X) 4 Erwartungswert Lernumgebung Hans Walser: 4 Erwartungswert ii Inhalt Erwartungswert und Varianz... Doppelwurf mit Würfeln... 3 3 Doppelwurf

Mehr

3. Grundbegriffe der Wahrscheinlichkeitstheorie

3. Grundbegriffe der Wahrscheinlichkeitstheorie 03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische

Mehr

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012 Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Wir betrachten Ereignisse, die in fast gleicher Form öfter auftreten oder zumindest öfter auftreten können. Beispiele: Werfen eines Würfels, Sterben an Herzversagen

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr