Diskrete Populationsmodelle für Einzelspezies - Teil 2

Größe: px
Ab Seite anzeigen:

Download "Diskrete Populationsmodelle für Einzelspezies - Teil 2"

Transkript

1 Diskrete Populationsmodelle für Einzelspezies - Teil 2 Laura Gemmel Literatur, die verwendet wurde: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer

2 Inhaltsverzeichnis 1 Stabilität, Periodische Lösungen und Bifurkationen 2 Abstrakte Delay -Modelle 3 Fischerei-Management-Modell 4 Umweltbedingte Auswirkungen und Vorbehalte 5 Tumor-Zellwachstum

3 Ziel des Vortrags Aufzeigen der möglichen Entwicklung bestimmter Populationen (Tiere, Zellen) Beispiele Population des Walfischs Population von Meeresfischen Unter welcher Voraussetzung könnte sich eine Population unausweichlich auslöschen?

4 Stabilität, Periodische Lösungen und Bifurkationen Definition Bifurkation (oder Verzweigung) Eine Bifurkation ist eine Zustandsänderung in nichtlinearen Systemen unter Einfluß eines Parameters r. f (u, r) : bestimmt die zeitliche Entwicklung des Sytemzustands r < r c : anderes Verhalten des Systems als bei r > r c Bifurkation bei r c System für Zeitpunkt t + 1 und Zustand u t+1 : u t+1 = f (u t, r)

5 Betrachte Funktion f mit folgendem Verlauf: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Interessant für uns: die Fixpunkte u : u = f (u, r)

6 Wunsch: Lineare Stabilität von u : u t = u + v t v t 1 Einsetzen von u t in vorherige Gleichung des Systemzustands u t+1, Entwicklung in Taylorreihe (bis 2. Summand) ergibt: u + v t+1 = f (u ) + v t f (u ) v t+1 = v t f (u ) = λv t, λ = f (u ) λ ist Eigenwert des Systemzustands beim Fixpunkt u.

7 Die Lösung ist: v t = λ t v 0 { 0 ± für t, wenn λ { < 1 > 1 Daher gilt: u ist { stabil instabil, wenn { 1 < f (u ) < 1 f (u ) > 1

8 u stabil jede kleine Störung dieses Gleichgewichts fällt auf Null ab, und zwar: monoton, wenn 0 < f (u ) < 1 abnehmend oszillierend, wenn 1 < f (u ) < 0 u instabil jede kleine Störung wächst unbegrenzt an: monoton, wenn f (u ) > 1 oszillierend, wenn f (u ) < 1

9 Konkretes Beispiel: u t+1 = f (u t ) = u t exp [ r(1 u t ) ] für r > 0 f (u t ) = (1 r u t ) exp [ r (1 u t ) ] Ansatz: u = u exp [ r(1 u ) ] u = 0 oder u = 1 Zugehörige Eigenwerte: λ u =0 = f (0) = e r > 1 für r > 0 u = 0 monoton unstabil λ u =1 = f (1) = 1 r

10 Betrachte also: λ u =1 = 1 r u = 1: stabil für 1 < 1 r < 1 0 < r < 2 mit Rückkehr zum Gleichgewicht monoton, falls 0 < r < 1 oszillierend, falls 1 < r < 2 instabil für 1 r > 1 mit: anwachsend oszillierend für 1 r < 1 r > 2 monoton anwachsend für 1 r > 1 r < 0 Bei r = 0 : erste Bifurkation Bei r = 2 : zweite Bifurkation

11 m -periodische Fixpunkte: f m (u 0, r) = u 0 und f i (u 0 ) u 0 i = 1, 2,..., m 1 u 0 ist Fixpunkt von f m Untersuchung der Stabilität eines solchen Fixpunkts mit Hilfe der Eigenwerte.

12 Betrachte Eigenwerte: λ m = d f m (u, r) d u u=ui, i = 0 oder 1 oder 2... oder m 1 Nach kurzer Rechnung: λ m = m 1 i=0 f (u i, r) Man sieht: EW λ m unabhängig von i

13 Fazit: Kritischer Wert bei r c : Übergang von r < r c nach r > r c : Bifurkation Bedeutet auch: Zugehöriger EW passiert den Wert λ = 1 oder λ = 1.

14 Abstrakte Delay -Modelle Bisherige Annahme bei unseren Modellen: Jedes Mitglied der Spezies zum Zeitpunkt t trägt zur Population zum Zeitpunkt t + 1 bei: stimmt z.b. bei Insekten, nicht aber bei Walen. Hier: Delay -Effekt ( Warte -Effekt): z.b. Wartezeit T bis zur Geschlechtsreife Modell: u t+1 = f (u t, u t T )

15 Zur Vereinfachung folgendes Modell: u t+1 = u t exp [ r(1 u t 1 ) ], r > 0 mit folgenden Gleichgewichtszuständen: u = 0 und u = 1, wobei u = 0 unstabil. Linearisierung von u = 1 : u t = 1 + v t ; v t v t+1 (1 + v t ) (1 r v t 1 ) für v t = z t z 2 z + r = 0

16 Ergibt zwei Lösungen: Falls r < 1 4 : z 1 = 1 2 reelle Lösungen Falls r > 1 4 : [ 1 + ] 1 4r ; z 2 = 1 2 [ 1 ] 1 4r : z 1 = ρ e iθ ; z 2 = ρ e iθ : komplexe Lösungen mit ρ = r, θ = arctan 4r 1

17 Allgemeine Lösung unserer DGL: v t = A z t 1 + B zt 2 Falls 0 < r < 1 4 ( z 1, z 2 reell), gilt: 0 < z 1, z 2 < 1 v t 0 mit t u = 1 stabil Falls 1 4 < r < 1 ( z 1, z 2 komplex), gilt: z 2 = z 1 z 1, z 2 < 1 v t = A z t 1 + B z 1 t v t reell B = A reelle Lösung: v t = 2 A ρ t cos(θt + γ), γ = arga, θ = arctan 4r 1

18 r passiert r c = 1 z 1 = ρ > 1 v t für t u instabil θ π 3 für r 1 v t 2 A cos( π 3 t + γ) 2π p = π 3 Periode p = 6

19 Darstellung an drei Beispielen: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Figur 1 ( r = 1, 02 ) zeigt noch die Periode 6

20 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer In Figur 2 ( r = 1, 1 ): Noch Elemente einer 6er-Periode, aber irregulär

21 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer In Figur 3: ( r = 1, 4 ): Die 6er-Periode ist verloren, spitzer Verlauf: frühes Anzeichen von Chaos

22 Fischerei-Management-Modell Ziel: Optimierung der wirtschaftlichen Ausbeute Annahme: 1) Beschreibung der Populationsdichte ohne Ernte durch N t+1 = f (N t ) 2) Sei h t die Ernte zur Zeit t : N t+1 = f (N t ) h t Forderung: (i) Maximaler biologischer Gewinn (ii) Maximaler wirtschaftlicher Gewinn Gleichgewicht: N t = N = N t+1, h t = h h = f (N ) N

23 Sei Y M die maximale Ausbeute im stabilen Zustand: d h d N = 0 f (N ) = 1 und Y M = f (N M ) N M ; N = N M Problem: Unkenntnis der aktuellen Population Bekannt: Aktueller Ertrag und der Aufwand, ihn zu erreichen Daher: Formulierung des Problems in Ertrag und zugehörigem Aufwand

24 Annahme: 1 Aufwandseinheit resultiert in einer Ernte c N c : der Fangfähigkeitsparameter, unabhängig von der aktuellen Population N Abernten einer Einheit: Aufwand 1 cn 1 Y M = f (N M ) N M abernten: Aufwand E M = Falls cn groß gegen 1 Einheit: E M 1 c f (N M ) N i =N M 1 cn f (NM ) 1 N M N dn = 1 ( ) f c ln (NM ) N M

25 Beispiel: N t+1 = f (N t ) = b N t a + N t mit 0 < a < b Y M = b N M N M, E M = 1 ( b a + N M c ln a + N M Eliminieren von N M ergibt nach kurzer Rechnung: Y M = ( b e ce M a ) (e ce M 1 ) )

26 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Man erkennt: Zunächst steigt Ertrag mit Aufwand. Jenseits eines kritischen Werts E c : Abfall von Y M steigendem E M! Grund: Überfischung trotz

27 Ausbau dieses Modells: Berücksichtigung von: Preis für die Ernte Kosten für den Aufwand R = p Y M k E M p : Preis pro Ernteeinheit, k : Kosten pro Aufwandseinheit

28 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer der optimale Aufwand E r liegt jetzt noch früher als im ersten Fall.

29 Fazit: Die Resultate sollen nicht zu ernst genommen werden. Unsere Annahme: Die abgeerntete Population ist im stabilen Zustand In Wirklichkeit: Die Fisch-Population zeigt starke Fluktuation Möglich: Wachstumsrate wird so groß, dass sich chaotisches Verhalten einstellt Andererseits: Fischerei kann stabilisierend wirken und u.u. stabilen Zustand wiederherstellen

30 Umweltbedingte Auswirkungen und Vorbehalte Umgebungsparameter ändern sich: Die Entwicklung der Population kann sich ändern. Ziel: Verstehen der kontrollierenden Merkmale einer Populationsentwicklung Entwicklung geeigneter dynamischer Modelle und ihre graphische Darstellung

31 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer

32 N max : d f d N t = 0 N m ; N max = f (N m ) N min : N min = f (N max ) = f ( f (N m ) ) = f 2 (N m ) Beispiel: [ ( N t+1 = f (N t ) = N t exp r 1 N )] t K K : Anzahl für stabilen Zustand. f (N t ) = 0 N m = K r N max = f (N m ) = K r e r 1 N min = K r exp [ 2r 1 e r 1]

33 Steiles Abstiegsverhalten der Kurve f (N t ) bei N t > N m : Dramatischer Rückgang der Population zu Werten nahe N min Auslöschung fast unausweichlich, wenn N t auf geringe Werte zurückgeht Schätzung mit obigem Beispiel: N min = K r exp [ 2r 1 e r 1] 1 Seien r = 3, 5 und K < 1600 : evtl. Auslöschung

34 Allee-Effekt: Deutliches Zusammenfallen der Population, wenn diese unter einen bestimmten Schwellenwert N c fällt. J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Solche Modelle treten oft als Ergebnis von Raub auf. Die Gegend N t < N c heißt deshalb auch die Raubgrube.

35 N t = 0 stabil N c instabil (da EW λ = f (N c ) > 1 ) N stabil oder instabil je nach der Größe von f (N ) Auslöschung unausweichlich, sobald N t < N c Modelle, die dem Allee-Effekt unterliegen: Fast jedes exotische Schwingungsverhalten Möglichkeit der Auslöschung, sobald f m (N t ) < N c für ein m

36 Tumor-Zellwachstum Man verwendet häufig: N t+1 = r N t (1 N t ) Dabei: r : Die Wachstumsrate der Zellen N t : Die relative Tumorzellanzahl (also normiert auf 1) Dabei gilt: r < 3 N t wächst bis zum Erreichen des stabilen Zustands (r 1) r r > 3 N t : periodisches Verhalten, evtl Übergang zu Chaos, falls r > r c

37 Hier einige typische Beispiele für Populations-Wachstum: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Man erkennt: N t wächst in Form einer S-Kurve zum stabilen Zustand r 1 r Für großes r (r = 2, 5) : Zu Beginn des stabilen Zustands leicht oszillierend

38 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Hier: r = r c = 3 : Periodische Lösung, im frühen Stadium auch in Form einer Quasi-S-Kurve r > r c : Chaotisch

39 Zum Abschluß : Der Fall von identischen Individuen (Multi-Klone). Annahme: Verschiedene Wachstumsraten Für alle Klone gleiches r > r c, sodass für alle chaotisches Wachstumsverhalten Es zeigt sich, dass die Wachstumskurve von der Startanzahl an Individuen abhängt:

40 Anzahl der Klone zu Beginn: 5 J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Man erkennt am Anfang wieder einen S-artigen Verlauf und den Beginn einer Glättung des chaotischen Verhaltens.

41 Anzahl der Klone zu Beginn: 200 Offensichtlich ist der Glättungseffekt des chaotischen Verhaltens umso stärker, je mehr Klone am Anfang dabei waren. Also klar: Eine große Anzahl von Klone kann ein chaotisches Verhalten verdecken. J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1

Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1 Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1 Continuous Population Models for Single Species (1.1.-1.4) Florian Scheid 23.10.2012 Gliederung 1 Einführung

Mehr

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbsmodell Das einfachste Wettbewerbsmodell für zwei Spezies lässt sich aus dem Lotka- Volterra Modell ableiten und sieht folgendermaßen aus: dn1

Mehr

Modelle für interagierende Populationen

Modelle für interagierende Populationen Modelle für interagierende Populationen Christoph Molitor 06.11.2012 Seminar: Mathematische Modelle in der Biologie (WS 12/13) Literatur: J. D. Murray (2002): Mathematical Biology: I. An Introduction,

Mehr

Belousov-Zhabotinskii Oszillierende Reaktionen

Belousov-Zhabotinskii Oszillierende Reaktionen Belousov-Zhabotinskii Oszillierende Reaktionen Aline Brost 08. Januar 2013 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Die Belousov-Reaktion und

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider 05.02.2013 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

Mehr

Stetige Populationsmodelle

Stetige Populationsmodelle Stetige Populationsmodelle Christof Straßer Autor: J.D.Murray Titel: Mathematical Biology 31.01.01 James Dickson Murray Geb.: 0.01.1931 Professor Emeritus Oxford u. Washington Bereich biologische und biomedizinische

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Modellbildung und Simulation, Kap (S ) 10 Zwei-Spezies-Modelle

Modellbildung und Simulation, Kap (S ) 10 Zwei-Spezies-Modelle Erratum zu Modellbildung und Simulation, Kap. 1.3 (S. 256 261) 1 Zwei-Spezies-Modelle Interessanter als einzelne Populationen sind Modelle mit mehreren Arten, die miteinander in Wechselwirkung stehen,

Mehr

Teil 1 - Epidemische Modelle

Teil 1 - Epidemische Modelle Teil 1 - Epidemische Modelle 15. Januar 2013 Literatur: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 2 3 4 5 Ziele meines Vortrags Ein grlegen Modell () zur

Mehr

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Reaktionskinetik Maximilian Erlacher Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Themen: 1 Basisenzymreaktion 2 Michaelis-Menten-Analyse 3 Selbstauslöschende Kinetik

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007 Differenzengleichung Differentialgleichung 1. Ordnung (konstante Koeff.) Gestalt x n+1 =ax n +b allgemeine Lösung x n = a n x 0 +b((a n -1)/(a-1)) für a 1 oder x n = x 0 +b n für a=1 partikuläre Lösung

Mehr

Nichtlineare Dynamik in biologischen Systemen

Nichtlineare Dynamik in biologischen Systemen Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik 29. August 2006 11 Nichtlineare Dynamik in biologischen Systemen Erster Gutachter: Prof. Dr. Wolfgang Oehme, Universität

Mehr

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems:

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: - t tritt bei konkreten beobachteten Systemen nicht auf t >> τ (τ: charakteristische Systemzeit) - t: Dauer der Beobachtung, Prognosezeitraum,...

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Dynamische Systeme. Mathematik für Biologen, Biotechnologen und Biochemiker. Angela Holtmann

Dynamische Systeme. Mathematik für Biologen, Biotechnologen und Biochemiker. Angela Holtmann Mathematik für Biologen, Biotechnologen und Biochemiker 16.7.2008 Das Räuber-Beute-Modell Das Räuber-Beute-Modell Es gibt zwei Arten, wobei die eine Art die andere frisst. 1925: Volterra (Italiener) und

Mehr

Oszillatorgenerierte Wellenphänomene und Zentralmustergeneratoren

Oszillatorgenerierte Wellenphänomene und Zentralmustergeneratoren Oszillatorgenerierte Wellenphänomene und Zentralmustergeneratoren Christian Schmi 29.01.2013 Literatur: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Überblick 1 Kinetische

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Differenzengleichungen

Differenzengleichungen Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Mathematische Methoden in der Systembiologie WS 2017/2018

Mathematische Methoden in der Systembiologie WS 2017/2018 Mathematische Methoden in der Systembiologie WS 2017/2018 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Tutor: M.Sc. D. Danciu (dpdanciu@math.uni-heidelberg.de) /Übung: Di.+Do. 9:15-10:45Uhr,

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.

Mehr

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum...

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum... Wirtschaftswissenschaftliches Zentrum 6 Universität Basel Mathematik Dr. Thomas Zehrt Differenzengleichungen Inhaltsverzeichnis 1 Einführung 1.1 Vermögenswachstum.............................. 3 1. Unbeschränktes

Mehr

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum...

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum... Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik 1 Dr. Thomas Zehrt Differenzengleichungen Inhaltsverzeichnis 1 Einführung 1.1 Vermögenswachstum.............................. 3 1. Unbeschränktes

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr

Synchronisation in Natur und Technik

Synchronisation in Natur und Technik Am Beispiel des Kuramoto-Modells Jan Baumbach Christoph Schöler Christian Barthel 2 Inhalt 1. Einleitung 2. Kuramoto-Modell 3. Simulation und Ergebnisse 3 Die Motivation Das Phänomen Synchronisation tritt

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete

Mehr

Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften

Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes (Lehrbeauftragter) Systemanalyse 2 Kapitel 6: Nichtlineare Modelle Nichtlineare

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes 6. Nichtlineare Modelle 6.1 Nichtlineare Modelle

Mehr

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent Floquet heorie (III Vortrag zum Seminar zu gewöhnlichen Differentialgleichungen, 25..2 Andreas Schmitz Nachdem Gabriela Ansteeg uns in die heorie eingeführt hat und Sebastian Monschang weitere Vorarbeit

Mehr

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017 Spezielle Kinetik MC 1.3 Prof. Dr. B. Dietzek Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie Wintersemester 2016/2017 B. Dietzek/D. Bender Spezielle Kinetik 1 Physikalische Chemie//Master

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

Stabilität des Golfstroms

Stabilität des Golfstroms Stabilität des Golfstroms Yannis Fürst Seminar: Mathematische Modellierung Seminarleiterin: Dr. Iryna Rybak Universität Stuttgart 11. Mai 2016 Grundlagen der Modellierung Expertenvortrag Modellskizze Beispielmodellierung

Mehr

Prüfung zur Vorlesung Mathematik III

Prüfung zur Vorlesung Mathematik III Dr. A. Caspar ETH Zürich, August 2013 Prof. N. Hungerbühler HST, Lehrdiplom D-MATH Prüfung zur Vorlesung Mathematik III Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 04. Juni 00 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni 00 (in

Mehr

Kapitel 6: Erneuerbare natürliche Ressourcen

Kapitel 6: Erneuerbare natürliche Ressourcen Kapitel 6: Erneuerbare natürliche Ressourcen Kapitel im Lehrbuch / Inhalt Im Perman: Kapitel 14: The efficient and optimal use of natural resources Kapitel 17: Renewable resources Inhalt der orlesung:

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Einfache Modelle der Populationsdynamik

Einfache Modelle der Populationsdynamik Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

2 Die Schritte zum Ziel

2 Die Schritte zum Ziel 2 Die Schritte zum Ziel 2.1 Ein einfaches Modell aufstellen Um zu verstehen, wie ein Segway die Balance hält, betrachten wir ein etwas einfacheres Problem: Wir wollen herausfinden, wie sich ein inverses

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 2. Februar 2015 : Luftdruck Definition e: Populationsdynamik Satz von Picard und Lindelöf Folgerungen/Bemerkungen...von DGLn höherer Ordnung

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

Projekt Bakterienkultur

Projekt Bakterienkultur 1 Einleitung Projekt Bakterienkultur Mathematische Modellierung I Sommersemster 2010 Anna Aichmayr, Georg Rief, Patrica Walker 1.1 Physikalische Grenzen Dienstag, Juli 13, 2010 Der zu untersuchende Bereich

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4 Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4 Patrick Klein 22.01.13 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Rindertuberkulose

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen 114 Kapitel 2 Konforme Abbildungen 6 Julia-Mengen Sei G C ein Gebiet. Eine holomorphe Abbildung f : G G kann eine holomorphe oder eine meromorphe Funktion auf G sein. Definition. Zwei holomorphe Abbildungen

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Räuber-Beute-Modelle, Auslese/Schwellensatz

Räuber-Beute-Modelle, Auslese/Schwellensatz Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 111 Systeme von Differenzialgleichungen Luchs und Hase Hans Walser: Modul 111, Systeme von Differenzialgleichungen. Luchs und Hase ii Inhalt 1 Lineare

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr