12. Vorlesung. 19. Dezember 2006 Guido Schäfer

Größe: px
Ab Seite anzeigen:

Download "12. Vorlesung. 19. Dezember 2006 Guido Schäfer"

Transkript

1 LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige Information hat und somit die Payoff-Funktionen seiner Mitspieler kennt und seine Entscheidungen auf der Grundlage dieser Information treffen kann. Diese Annahme ist in vielen Situationen nicht angemessen. Ein Bayesian Game stellt eine natürliche Erweiterung eines Spiels in strategischer Form, dar, die es erlaubt, unvollständige Informationen der Spieler zu modellieren. Spieler treffen ihre Entscheidungen auf der Basis ihrer Vermutungen bzgl. der Präferenzen der anderen Spieler. Wir beschreiben die Modellierung zunächst anhand des folgenden Beispiels. Beispiel 4. (Bach oder Stravinsky mit unvollständiger Information). Wir betrachten erneut das Beispiel Bach oder Stravinsky, das wir bereits in Beispiel. untersucht haben. Zur Erinnerung hier nochmal kurz das Setting: Zwei Freunde möchten zusammen in ein Konzert gehen. Spieler bevorzugt Bach, Spieler Stravinsky. Beide möchten lieber gemeinsam als getrennt ins Konzert gehen: Bach Stravinsky Bach (, ) (0, 0) Stravinsky (0, 0) (, ) Angenommen Spieler ist sich nicht sicher, ob Spieler mit ihm ausgehen möchte oder nicht. Er stellt die Vermutung an (etwa aufgrund seiner Erfahrung in der Vergangenheit), dass Spieler mit Wahrscheinlichkeit / mit ihm ausgehen möchte und mit Wahrscheinlichkeit / nicht. ω : Spieler möchte Bach Stravinsky Bach (, ) (0, 0) Stravinsky (0, 0) (, ) ω : Spieler möchte nicht Bach Stravinsky Bach (, 0) (0, ) Stravinsky (0, ) (, 0) Abbildung 9: 57

2 Wir können dies durch zwei Zustände ω und ω darstellen; siehe Abbildung 9. Jeder Zustand charakterisiert das Spiel vollständig und repräsentiert das Spiel in strategischer Form mit vollständiger Information. Wir drücken die Vermutung von Spieler durch eine Wahrscheinlichkeitsverteilung P über Ω := {ω,ω } aus: P (ω ) = P (ω ) = /. Spieler weiß, ob er mit Spieler ausgehen möchte oder nicht (er hat vollständige Information). Aus der Sicht von Spieler hat Spieler zwei Typen: Spieler möchte und Spieler möchte nicht. Für einen gegebenen Typen von Spieler und einer Aktion von diesem Typen, kennt Spieler seinen Payoff. Wählt Spieler zum Beispiel die Aktion B (Bach) und die Wahl von Typ des Spielers (Spieler möchte) ist S (Stravinsky), so ist sein Payoff 0. Anhand der Wahrscheinlichkeitsverteilung P von Spieler können wir damit den erwarteten Payoff von Spieler für jede Kombination der Aktionen der Typen von Spieler berechnen: B 0 S 0 Wählt Typ die Aktion S und Typ die Aktion S, so ist der erwartete Payoff 0 wenn er B wählt und wenn er S wählt. Das Lösungskonzept eines Nash-Gleichgewichtes lässt sich nun übertragen: Spieler wählt eine bestmögliche Aktion bzgl. der Aktionen der Typen von Spieler aus (im Erwartungswert). Spieler wählt für jeden seiner Typen eine bestmögliche Aktion aus, gegeben die Aktion von Spieler. Wir verwenden hier wieder die Idee der Beste-Antwort Funktionen, um ein Nash- Gleichgewicht zu bestimmen: die beste Antwort von Spieler auf die Aktionen (B,B) der beiden Typen von Spieler ist B: b (B,B) = B. Es ergibt sich: b (B,B) = B b (B,S) = B b (S,B) = B b (S,S) = S. Die besten Antworten sind in der obigen Abbildung als Boxen hervorgehoben. Analog ergibt sich für die beiden Typen von Spieler (siehe Abbildung 9): b (B) = B b (S) = S b (B) = S b (S) = B, wobei zum Beispiel b (S) die beste Antwort von Typ des Spielers auf die Aktion B von Spieler angibt. Wir wissen, dass für strategische Spiele mit vollständiger Information ein Nash- Gleichgewicht ein Aktionsprofil ist, in dem jede Aktion eines Spielers eine beste Antwort auf die Aktionen der anderen Spieler ist. Ganz ähnlich erhalten wir in diesem Beispiel, dass (B,(B,S)) ein Nash-Gleichgewicht ist. 58

3 y ω B S B (, ) (0, 0) S (0, 0) (, ) P (ω y ) = ω B S B (, 0) (0, ) S (0, ) (, 0) P (ω y ) = n ω B S B (0, ) (, 0) S (, 0) (0, ) P (ω n ) = Abbildung 0: ω 4 B S B (0, 0) (, ) S (, ) (0, 0) P (ω 4 n ) = 4. Formale Definition Sei N die (endliche) Menge aller Spieler. Jeder Spieler i N hat eine (endliche) Aktionsmenge A i. Die (endliche) Menge aller Zustände bezeichnen wir mit Ω. Jedes ω Ω spezifiziert alle relevanten Informationen für alle Spieler (ω repräsentiert ein strategisches Spiel mit vollständiger Information). Im weiteren Verlauf ist die folgende Sichtweise hilfreich: Zu Beginn des Spiels wird ein Zustand ω Ω realisiert. Dieser Zustand wird den Spielern nicht mitgeteilt; stattdessen erhält jeder Spieler ein sog. Signal. Jeder Spieler hat eine Signalfunktion τ i : Ω T i, die jedem Zustand ω Ω einen Typen in T i zuweist; T i ist die Menge aller Typen von Spieler i. Wird der Zustand ω zu Beginn realisiert, empfängt Spieler i nur seinen Typen τ i (ω) T i als Signal. Sei τi die Umkehrfunktion von τ i ; wir definieren τi (t i ) als die Menge aller Zustände ω Ω mit τ i (ω) = t i. Gewissermaßen gibt die Anzahl der Zustände in τi (t i ) Aufschluss über die Qualität der Information von Typ t i des Spielers i. Gibt es etwa für jeden Zustand genau einen Typen, kennt Spieler i den tatsächlich realisierten Zustand; werden hingegen alle Zustände auf einen Typen abgebildet, weiß Spieler i gar nichts über den realisierten Zustand. Für jeden Typen t i T i eines Spieler i N gibt es eine Wahrscheinlichkeitsverteilung P i ( t i ) über Ω mit P i (ω t i ) = 0 für alle ω / τi (t i ). P i (ω t i ) gibt die Wahrscheinlichkeit (oder Vemutung) von Spieler i an, dass ω eintritt. Schliesslich definiert die Payoff-Funktion von Spieler i N für jedes Aktionsprofil a A := j N A j und jeden Zustand ω Ω einen Wert u i (a,ω) R. Mittels dieser Notation können wir nun ein Bayesian Game wie folgt definieren. Definition 4.. Ein Bayesian Game ist definiert durch (N,Ω,(A i ),(T i ),(τ i ),(P i ),(u i )). Wir veranschaulichen die obigen Definitionen anhand des folgenden Beispiels: 59

4 y ω B S B (, ) (0, 0) S (0, 0) (, ) P (ω y ) = ω B S B (0, ) (, 0) S (, 0) (0, ) P (ω y ) = n ω B S B (, 0) (0, ) S (0, ) (, 0) P (ω n ) = ω 4 B S B (0, 0) (, ) S (, ) (0, 0) P (ω 4 n ) = Abbildung : Beispiel 4.. Wir betrachten wiederum das Beispiel von Bach oder Stravinsky, diesmal sind sich jedoch beide Spieler nicht sicher, ob der andere ausgehen möchte oder nicht. Es gibt vier Zustände, die wir mit ω := j j (beide wollen), ω := jn (Spieler möchte, Spieler nicht), ω := n j (Spieler möchte nicht, Spieler möchte) und ω 4 := nn (beide möchten nicht) bezeichnen. Die Sichtweise von Spieler ist in Abbildung 0 dargestellt, die von Spieler in Abbildung. Spieler hat zwei Typen T := {y,n }. Spieler hat ebenfalls zwei Typen T := {y,n }. Die Signalfunktionen von Spieler sind wie folgt definiert: τ (ω ) = τ (ω ) = y und τ (ω ) = τ (ω 4 ) = n. D.h. zum Beispiel, dass Spieler nicht unterscheiden kann, ob ω oder ω realisiert wurde. Die Signalfunktionen von Spieler sind: τ (ω ) = τ (ω ) = y und τ (ω ) = τ (ω 4 ) = n. Die Vermutungen von Spieler für die entsprechenden Signale sind gegeben als: P (ω y ) = P (ω y ) = und P (ω n ) = P (ω 4 n ) =. Die von Spieler sind: P (ω y ) = P (ω n ) = und P (ω y ) = P (ω 4 n ) =. Erhält Spieler das Signal n (es wurde ω oder ω 4 realisiert), so vermutet er, dass mit Wahrscheinlichkeit / der Zustand ω und mit Wahrscheinlichkeit / der Zustand ω 4 realisiert wurde. Die Payoff-Funktionen können direkt aus den Tabellen abgelesen werden. 60

5 4. Nash-Gleichgewicht In einem Bayesian Game wählt jeder Spieler i N für jeden seiner Typen t i T i eine Aktion a i (t i ) A i vor Spielbeginn aus. Nachdem ein Zustand ω Ω realisiert wurde, spielt jeder Spieler i N seine zuvor festgelegte Aktion a i (τ i (ω)). Informell ist in einem Nash-Gleichgewicht die von Spieler i gewählte Aktion a i (t i ) für jeden Typen t i T i eine bestmögliche Aktion, gegeben die Aktionen von allen Typen der anderen Spieler und seine Vermutung (sprich Wahrscheinlichkeitsverteilung P i ). Wir definieren ein strategisches Spiel G = (N,(A i ),(u i )) mit (i,t i) für alle i N und für alle t i T i als Spieler. Wir haben also einen Spieler für jeden Typen. Die Aktionsmenge A i für Spieler (i,t i) ist A i. Somit ist ein Aktionsprofil definiert als a A := j N ( t j T j A j ). Für ein Aktionsprofil a A, bezeichne a (i,t i ) die Aktion von Spieler (i,t i ) bzgl. a. Der erwartete Payoff von Spieler (i,t i ) bei gegebenem Aktionsprofil a A ist definiert als u i,t i (a ) := P i (ω t i ) u }{{} i ((a ( j,τ j (ω))) j N,ω). ω Ω =0 falls τ i (ω) t i Bemerke, dass der erwartete Payoff u i,t i (a ) nicht von den gewählten Aktionen der anderen Typen t j T i, t j t i, von Spieler i abhängt; wohl aber von den Aktionen der Typen der anderen Spieler. Definition 4.. Ein Nash-Gleichgewicht eines Bayesian Game G := (N,Ω,(A i ),(T i ),(τ i ),(P i ),(u i )) ist definiert als ein Nash-Gleichgewicht des strategischen Spiels G := (N,(A i ),(u i )) mit N := {(i,t i ) : i N, t i T i }; A i,t i := A i für alle i N, t i T i ; u i,t i (a ) wie oben definiert. Definition 4. ermöglicht es, die Nash-Gleichgewichte des Bayesian Game in Beispiel 4. zu berechnen. Beispiel 4. (Fortsetzung). Wir bestimmen die Beste-Antwort Funktion für jeden Spieler in G. Der erwartete Payoff von Spieler (,y ) ist wie folgt (beste Antworten sind als Boxen hervorgehoben): Analog ergibt sich für Spieler (,n ): B 0 S 0 6

6 B 0 S 0 Für Spieler (,y ): B 0 S 0 4 (Bemerke, dass nun ein Aktionsprofil (B,S) bedeutet, dass Spieler bei Typ y Aktion B spielt und bei Typ n Aktion S spielt.) Und für Spieler (,n ): B 0 S 4 0 Es ist nun relativ leicht zu verfizieren, dass die Aktionsprofile ((B,B),(B,S)) und ((S, B),(S, S)) Nash-Gleichgewichte sind (jede Aktion ist eine beste Antwort auf alle anderen Aktionen). 6

10. Vorlesung. 12. Dezember 2006 Guido Schäfer

10. Vorlesung. 12. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Spieltheorie in der Ökonomie

Spieltheorie in der Ökonomie in der Ökonomie Kevin Klein Technische Universität Wien 19. Dezemberl 2012 Inhaltsverzeichnis 1 Gliederung 2 Normalform Grundlagen Präferenzen,Nutzen Lösungskonzepte 3 Grundlagen Cornout Oligopol Bertrand

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

Exkurs zur Spieltheorie. 1 Statische Spiele mit unvollständiger Information

Exkurs zur Spieltheorie. 1 Statische Spiele mit unvollständiger Information Wettbewerbstheorie und -politik Spieltheorie-1 Dr. Florian Englmaier Exkurs zur Spieltheorie Bisher haben wir stets Spiele mit vollständiger Information analysiert (complete information). Alle Spieler

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Hauptseminar Spieltheorie Wintersemester 2005/06 Bayesian Games

Hauptseminar Spieltheorie Wintersemester 2005/06 Bayesian Games Hauptseminar Spieltheorie Wintersemester 2005/06 Bayesian Games Betreuer: Felix Fischer Lehrstuhl Grundlagen der Künstlichen Intelligenz Institut für Informatik Technische Universität München Boltzmannstrasse

Mehr

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen Seminararbeit zur Spieltheorie Thema: Rationalisierbarkeit und Wissen Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Verfasst von: Maximilian Mümken Sommersemester

Mehr

7. Vorlesung. 21. November 2006 Guido Schäfer

7. Vorlesung. 21. November 2006 Guido Schäfer LETZTE ÄNDERUNG: 21. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 7. Vorlesung 21. November 2006 Guido Schäfer Wenn die Latenzfunktionen (c e ) e E differenzierbar und schwach monoton

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 5.:

Mehr

5. Vorlesung Spieltheorie in der Nachrichtentechnik

5. Vorlesung Spieltheorie in der Nachrichtentechnik 5. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Lösungskonzepte bei unvollständiger Information Wenn Spieler private Informationen

Mehr

Nicht-kooperative Spiele

Nicht-kooperative Spiele Kapitel 1 Nicht-kooperative Spiele 1.1 Zwei-Personen-Spiele Definition 1: Ein Zwei-Personen-Spiel Γ besteht aus einem Paar nichtleerer Mengen S T zwei reellwertigen Funktionen φ 1 φ 2 auf dem kartesischen

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Teil 1: Statische Spiele mit vollständigen Informationen

Teil 1: Statische Spiele mit vollständigen Informationen Teil 1: Statische Spiele mit vollständigen Informationen Kapitel 1: Grundlagen und Notation Literatur: Tadelis Chapter 3 Statisches Spiel In einem statischen Spiel...... werden die Auszahlungen durch die

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Seminarvortrag Extensive Spiele mit imperfekter Information

Seminarvortrag Extensive Spiele mit imperfekter Information Seminarvortrag Extensive Spiele mit imperfekter Information Eva Fischedick Betreuer: Prof. Dr. Löwe 19. Juni 2012 Inhaltsverzeichnis 1 Einleitung 3 2 Extensive Spiele mit imperfekter Information 3 2.1

Mehr

Matrixspiele: Alle Spieler ziehen gleichzeitig:

Matrixspiele: Alle Spieler ziehen gleichzeitig: Für die Übungsleiter Mikro 2 WS00/01 zur Vorbereitung der Spieltheorie: (Achtung: Kann Fehler enthalten oder unvollständig sein). Spieler 1 zieht Zeilen, Spieler 2 Spalten. L R Betrachte folgendes Spiel:

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2006 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für die Beantwortung

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6 Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Idee In vielen Spielen gibt es kein Nash Gleichgewicht in reinen Strategien (und auch kein Gleichgewicht in dominanten Strategien) Darüber hinaus

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

3.4 von Neumannsche Theorie kooperativer Spiele

3.4 von Neumannsche Theorie kooperativer Spiele 3.4 von Neumannsche Theorie kooperativer Spiele Gliederung Die charakteristische Funktion eines Spieles Der Wert eines Spieles und Strategische Äquivalenz Der von Neumannsche Lösungsbegriff Definition

Mehr

Teil 1: Statische Spiele mit vollständigen Informationen

Teil 1: Statische Spiele mit vollständigen Informationen Teil 1: Statische Spiele mit vollständigen Informationen Kapitel 1: Grundlagen und Notation Literatur: Tadelis Chapter 3 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Statisches

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

Kapitel 4: Gemischte Strategien

Kapitel 4: Gemischte Strategien Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 4.1: Motivation Motivation In vielen Spielen gibt es kein

Mehr

Spieltheorie Übungsblatt 5

Spieltheorie Übungsblatt 5 Spieltheorie Übungsblatt 5 Tone Arnold Universität des Saarlandes 16. Juni 2008 Tone Arnold (Universität des Saarlandes) Musterlösung Übungsblatt 5 16. Juni 2008 1 / 19 Aufgabe 1 (a) Betrachten Sie das

Mehr

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info)

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) 1 KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) In Kap. 9 gesehen: Manche Nash-GGe in extensiven Spielen erscheinen unplausibel: wenn sie unglaubwürdige Drohungen...... bzw. zeitinkonsistente

Mehr

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien Probleme bei reinen Strategien Bisher hatten wir angenommen, daß sich jeder Spieler b auf genau eine Strategie S b S b festlegt. Das ist nicht immer plausibel. Nash Gleichgewichte in gemischten Strategien

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

3 Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitstheorie Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

KLAUSUR SPIELTHEORIE

KLAUSUR SPIELTHEORIE Prof. Dr. Klaus M. Schmidt Wintersemester 2007/08 KAUSU SPIETHEOIE Sie haben für die folgenden 4 Aufgaben 120 Minuten Zeit. Sie können insgesamt 120 Punkte erreichen. Als Hilfsmittel ist lediglich ein

Mehr

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele Kapitel 3 Matrix Spiele Seminar Spieltheorie, SS 006 3. Matrix-Spiele Vorgegeben sei ein Nullsummenspiel Γ = (S, T, φ, φ mit endlichen Strategiemengen S und T, etwa S = (s,..., s m und T = (t,..., t n.

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 12 Präferenzen über Lotterien 1/24 2.1 Modellrahmen Wir betrachten im

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Christian Kroiß Christian Kroiß 1 Aufgabe 5-1 Sei T ein Transitionssystem, dass sich aus dem im Folgenden informell beschriebenen

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

(X Y )(a) = X (a) Y (a).

(X Y )(a) = X (a) Y (a). Aufgabe Teilaufgabe a) Seien X, Y zwei Zufallsvariablen, so definieren wir das Produkt dieser Zufallsvariablen X Y wie folgt: (X Y )(a) = X (a) Y (a). Teilaufgabe b) Gegenbeispiel: Betrachten wir uns folgenden

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht?

Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht? Lösungen zu den Übungsaufgaben im Kapitel 7 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe : Betrachtet werde das Matrixspiel mit

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information Spieltheorie Winter 2013/14 Professor Dezsö Szalay 2. Dynamische Spiele mit vollständiger Information In Teil I haben wir Spiele betrachtet, in denen die Spieler gleichzeitig (oder zumindest in Unkenntnis

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 4. November 2016 1 4. November 2016 B. Nebel Info I 3 / 33 Spieltheorie beschäftigt

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 7. November 2017 1 7. November 2017 B. Nebel Info I 3 / 33 Spieltheorie beschäftigt

Mehr

11. Vorlesung Spieltheorie in der Nachrichtentechnik

11. Vorlesung Spieltheorie in der Nachrichtentechnik 11. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Mechanism Design und Implementation Theory Motivation durch einfaches Wahlbeispiel

Mehr

Spieltheorie. Manfred Hörz. } seiner möglichen Strategien aus, ohne die Strategieentscheidungen seiner Mitspieler zu kennen. ={ is 1.

Spieltheorie. Manfred Hörz. } seiner möglichen Strategien aus, ohne die Strategieentscheidungen seiner Mitspieler zu kennen. ={ is 1. Spieltheorie Manfred Hörz A = {1, 2,..., n} seien die Akteure eines Spiels. Jeder Akteur i wählt eine Strategie aus einer Menge S i ={ is 1,is 2,...,is k } seiner möglichen Strategien aus, ohne die Strategieentscheidungen

Mehr

Optimale Strategie für das Würfelspiel Zehntausend

Optimale Strategie für das Würfelspiel Zehntausend Optimale Strategie für das Würfelspiel Zehntausend David Peter 30. Oktober 2013 Um eine optimale Strategie für Zehntausend zu entwickeln, führen wir die Funktion E(p, n) ein, die den Erwartungswert an

Mehr

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht . Einführung: Idee, Beispiele, formale Darstellung 2. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information

Mehr

Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, Universität Mannheim, Prof. Dr. C. Hertling

Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, Universität Mannheim, Prof. Dr. C. Hertling Aufgaben und Lösungen für die Zweite Klausur zur Spieltheorie im HWS 2011, 06.02.2012 Universität Mannheim, Prof. Dr. C. Hertling Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90

Mehr

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht Dynamische Spiele mit unvollständiger Information Perfektes Bayesianisches Gleichgewicht Spieltheorie University of Bonn Dezsö Szalay Dieser Teil basiert auf Kapitel 4 "Gibbons (1992), A primer in Game

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 13 Präferenzen über Lotterien 1/26 2.1 Modellrahmen Wir betrachten im

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Spieltheorie und Anwendungen 1. Spiele mit simultanen und sequentiellen Zügen Informationsmengen Normalform vs.

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Grundkonzepte der Spieltheorie

Grundkonzepte der Spieltheorie Grundkonzepte der Spieltheorie Nach OZ SHY (2001): The Economics of Network Industries, Appendix A-C 1. Was ist Spieltheorie (Game Theory)? Werkzeugsammlung um Ergebnisse (outcomes) für eine Gruppe von

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Lösungen zum Ergänzungsblatt 2

Lösungen zum Ergänzungsblatt 2 Theoretische Informatik I WS 2018 Carlos Camino en zum Ergänzungsblatt 2 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig. Während in der Mathematik-I-Vorlesung

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Unique Equilibrium in a Model of Self-fulfilling Currency Attacks

Unique Equilibrium in a Model of Self-fulfilling Currency Attacks Unique Equilibrium in a Model of Self-fulfilling Currency Attacks by Stephen Morris und Hyun Song Shin (The American Economic Review, June 1998, pp. 587-597) Vortrag von Philippe Armbruster und Enrico

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Mikroökonomik B 4.4 Spiele in strategischer Form, unvollständige Information

Mikroökonomik B 4.4 Spiele in strategischer Form, unvollständige Information Mikroökonomik B 4.4 Spiele in strategischer Form, unvollständige Information Dennis L. Gärtner 13. Juli 2011 1 / 30 Motivation Unter vollständiger Info / Nash-GG: Spieler haben korrekte Beliefs über Aktionen

Mehr

Übung 6 Hausaufgaben Formale Techniken in der Software-Entwicklung

Übung 6 Hausaufgaben Formale Techniken in der Software-Entwicklung Übung 6 Hausaufgaben Formale Techniken in der Software-Entwicklung Christian Kroiß 28.05.2011 Christian Kroiß 1 Aufgabe 5-1 Sei T ein Transitionssystem, dass sich aus dem im Folgenden informell beschriebenen

Mehr

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen.

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen. Zusatzaufgaben In diesem Dokument werden wir Ihnen einige zusätzliche Übungsaufgaben zur Verfügung stellen. Es ist hiermit noch nicht abgeschlossen, sondern soll bis zum Ende des Semesters wachsen. Falls

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Motivation Phasenbestimmung

Motivation Phasenbestimmung Motivation Phasenbestimmung Problem Spezialfall der Phasenbestimmung Gegeben: Zustand z = 1 n y {0,1} n( 1)x y y Gesucht: x F n Für n = 1 ist der Zustand z = 1 ( 0 + ( 1) x 1 ) = H x. Es gilt H z = x,

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

8. Reinforcement Learning

8. Reinforcement Learning 8. Reinforcement Learning Einführung 8. Reinforcement Learning Wie können Agenten ohne Trainingsbeispiele lernen? Auch kennt der Agent zu Beginn nicht die Auswirkungen seiner Handlungen. Stattdessen erhält

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Klausur zur Spieltheorie Musterlösung

Klausur zur Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten

Mehr

Extensive Spiele mit perfekter Information

Extensive Spiele mit perfekter Information Seminarvortrag Extensive Spiele mit perfekter Information Michael Fleermann 05.06.2012 1 Einführung und Definition Ein extensives Spiel ist eine explizite Beschreibung der sequenziellen Struktur eines

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

Grundlagen und Nash Gleichgewichte in reinen Strategien

Grundlagen und Nash Gleichgewichte in reinen Strategien Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b

Mehr

Lösung zu Aufgabe 1 Blatt 9

Lösung zu Aufgabe 1 Blatt 9 Lösung zu Aufgabe 1 Blatt 9 Wir befinden uns in einem arbitragefreien 1-Perioden-Trinomialmodell. Die risikofreie Anlage β ist gegeben durch β 0 = 1 und β 1 = 1 + ρ mit ρ > 1. Die risikobehaftete Anlage

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. (m 0, m ) A. 2 k Gen( n ). 3 Wähle b R {0,

Mehr

In Spielen unter unvollkommener Information... Wir werden deshalb ein neues GG-Konzept einführen. Pefektes Bayesianisches Nash-Gleichgewicht

In Spielen unter unvollkommener Information... Wir werden deshalb ein neues GG-Konzept einführen. Pefektes Bayesianisches Nash-Gleichgewicht 1 KAP 14. Probleme mit Teilspielperfektheit Wir hatten TPNG eingeführt, weil N-GG in dynamischen Spielen...... unplausibel erschien (unglaubwürdige Drohungen) TPNG schliesst unglaubwürdige Drohungen aus......

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b

Mehr

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein mark.kirstein@tu-dresden.de Dresden,

Mehr

Stochastik Musterlösung 2

Stochastik Musterlösung 2 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 2 1. Wir betrachten folgende vier Wettersituationen. Es regnet nur am Morgen; Es

Mehr

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3)

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3) Vorlesung Drehimpulsaddition Wir betrachten ein mechanisches System, das aus zwei unabhängigen Systemen besteht. Jedes der zwei Subsysteme besitzt einen Drehimpuls. Der Drehimpuls des ganzen Systems ist

Mehr

Spieltheorie - Wiederholte Spiele

Spieltheorie - Wiederholte Spiele Spieltheorie - Wiederholte Spiele Janina Heetjans 12.06.2012 1 Inhaltsverzeichnis 8 Wiederholte Spiele 3 8.1 Einführung und Motivation................................. 3 8.2 Unendlich oft wiederholte Spiele:

Mehr

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig?

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Ringvorlesung Technische Mathematik 10. November 2009 Inhaltsverzeichnis Das Gefangenendilemma 1 Das Gefangenendilemma 2 Situationsanalyse

Mehr

Seminar Algorithmische Spieltheorie

Seminar Algorithmische Spieltheorie Seminar Algorithmische Spieltheorie Einführung in die klassische Spiel- und Mechanismentheorie Hagen Völzer Universität zu Lübeck 10. November 2004 0 Überblick 1. Spiele 2. Auktionen 3. Mechanismen 1 Gefangenendilemma

Mehr

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit: Kein Angreifer kann

Mehr

Lösungsskizzen zur Präsenzübung 03

Lösungsskizzen zur Präsenzübung 03 Lösungsskizzen zur Präsenzübung 03 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 16. November 2015 von:

Mehr