UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

Größe: px
Ab Seite anzeigen:

Download "UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009"

Transkript

1 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis und Integrltrnsformtionen Lösungsvorschläge zum 4. Übungsbltt Aufgbe Die homogene Gleichung y = besitzt ds chrteristische Polynom p(λ = λ 3 = (λ (λ + λ + mit den einfchen Nullstellen λ = und λ,3 = ± 3 i. Somit ist φ (x = e λx = e x, φ (x = e x/ cos ( 3 x, φ3 (x = e x/ sin ( 3 x ein zugehöriges Fundmentlsystem, und die llgemeine Lösung der homogenen Gleichung lutet y = c φ +c φ +c 3 φ 3 mit c, c, c 3 R. D die rechte Seite der inhomogenen Gleichung die Gestlt q(xe x ht, wobei q ein Polynom vom Grd ist, und eine Nullstelle von p ist, önnen wir eine spezielle Lösung der inhomogenen Gleichung mit dem entsprechenden Anstz y p (x = x + bx + c erhlten (vgl. Abschnitt 7.8. Dieser liefert p y p = (x + bx + c! = + x, und wir schließen =, b = und c =, beommen lso y p (x = x. Die llgemeine Lösung der inhomogenen Gleichung lutet somit y(x = x + c e x + e x/[ c cos ( 3 x + c3 sin ( ] 3 x (c, c, c 3 R. b Hier ht ds chrteristische Polynom p(λ = λ die einfchen Nullstellen und, d. h. die homogene Gleichung besitzt die llgemeine Lösung y(x = c e x +c e x mit c, c R. Die rechte Seite der inhomogenen Gleichung ist diesml von der Form q(xe x mit einem Polynom q vom Grd. D eine Nullstelle von p ist, mchen wir den Anstz y p (x = (x + be x für eine spezielle Lösung der inhomogenen Gleichung. Es gilt dnn und dmit ergibt sich y p = e x + (x + be x = (x + + be x, p = e x + (x + + be x = (4x be x, p y p = (4x be x (x + be x = (3x be x! = xe x, ws uf = 3 und b = 4 9 führt. Mit y p(x = ( 3 x 4 9 ex erhält mn ls llgemeine Lösung der inhomogenen Gleichung schließlich y(x = ( 3 x 4 9 ex + c e x + c e x (c, c R. c Die homogene Gleichung hben wir schon in b behndelt. D die rechte Seite der inhomogenen Gleichung diesml xe x lutet und eine Nullstelle des chrteristischen Polynoms p

2 mit Vielfchheit ν = ist, reicht es hier nicht, einen Anstz der Form (x + be x zu mchen; vielmehr muss mn y p (x = x ν (x + be x = (x + bxe x betrchten. Dnn ist y p = (x + be x + (x + bxe x = ( x + ( + bx + b e x, p = (x + + be x + ( x + ( + bx + b e x = ( x + (4 + bx + + b e x, d. h. mit diesem Anstz ht mn p y p = ( x + (4 + bx + + b x bx e x = (4x + + be x! = xe x. Koeffizientenvergleich liefert = 4 und b = 4. Die llgemeine Lösung der inhomogenen Gleichung lutet lso y(x = 4 (x xe x + c e x + c e x (c, c R. Dmit ergibt sich y( = c + c und y (x = 4 (x ex + 4 (x xe x + c e x c e x, lso y ( = 4 +c c. Beides soll = sein, ds bedeutet c = c = 8. Ds Anfngswertproblem ht somit die Lösung y(x = 4 (x xe x + 8 ex 8 e x = 8 (x x + e x 8 e x. d Ds chrteristische Polynom p(λ = λ 3 4λ + 3λ = λ(λ 4λ + 3 = λ(λ (λ 3 ht die einfchen Nullstellen, und 3, d. h. die homogene Gleichung besitzt y(x = c e x + c e x + c 3 e 3x (c, c, c 3 R ls llgemeine Lösung. Die rechte Seite der inhomogenen Gleichung ist von der Form ( cos(x + 4 sin(x e x. D + i eine Nullstelle von p ist, önnen wir ls Anstz für eine Lösung der inhomogenen Gleichung y p (x = cos(x + b sin(x wählen. Es gilt y p = sin x + b cos x, p = cos x b sin x, p = sin x b cos x, und dmit ergibt sich p 4 p + 3y p = ( + 4b 3 sin x + ( b b cos x! = cos x + 4 sin x. Dies liefert die Gleichungen + 4b = 4 und 4 + b =, lso = und b =. Somit hben wir y p (x = sin x und ls llgemeine Lösung der inhomogenen Gleichung y(x = sin x + c + c e x + c 3 e 3x (c, c, c 3 R. Bemerung: Mit z := y önnte mn uch z 4z + 3z = cos x + 4 sin x betrchten und die ermittelte Lösung z dnn noch integrieren. Aufgbe Die -periodische Funtion f : R C sei definiert durch f (x := x für lle x [,. Lut Beispiel ( in 8.5 gilt für die Fourieroeffizienten von f ˆf ( = 3 und ˆf ( = ( für.

3 Wegen ˆf( = x e ix dx = ˆf( = ˆf ( = 6 Somit lutet die Fourierreihe von f in omplexer Form = x e ix dx = ˆf (, Z, ergibt sich und ˆf( = ˆf ( = ( für. ˆf(e ix = 6 + = ( e ix. Die Koeffizienten und b in der reellen Drstellung der Fourierreihe nn mn folgendermßen gewinnen + ( cos(x + b sin(x = = ˆf( + ˆf( ( N und b = i ( ˆf( ˆf( ( N. { 3 für = In unserem Flle ergibt sich b = ( N und = ( für ( N. Bemerung: ( D f stetig und stücweise gltt ist, stellt die Fourierreihe von f nch dem Stz in 8.8 die Funtion f in llen Punten x R dr. ( Aus der Linerität des Integrls folgt: Sind α, β C und f, f : R C -periodische Funtionen, die über [, ] integrierbr sind, so gilt für die Fourieroeffizienten von αf + βf (αf + βf ˆ( = α ˆf ( + β ˆf ( für lle Z. Eine entsprechende Aussge gilt uch für die reellen Fourieroeffizienten von αf + βf (αf + βf = α (f + β (f für lle N, b (αf + βf = αb (f + βb (f für lle N. Nun zu g: Wegen g(x = für x [, und g(x = + x für x [, folgt für jedes Z ĝ( = g(xe ix dx = ( e ix dx + ( + xe ix dx = ( e ix dx + xe ix dx ; für = ergibt sich hier ( + = + ; sonst gilt (prtielle Integrtion = + = i( (x e ix i Dmit ist die Fourierreihe von g = x= ( ĝ(e ix = + + e ix i dx = ( ( e ix i ( i = i( = + (. ( i( + ( e ix. Als Koeffizienten in der reellen Form der Fourierreihe + = ( cos(x+b sin(x erhält mn = + und = ĝ( + ĝ( = (( /( sowie b = i(ĝ( ĝ( = ( + /. 3 x=

4 Nun zur Funtion h: Zur Abwechslung berechnen wir diesml diret die Koeffizienten und b in der Cosinus/Sinus-Drstellung der Fourierreihe. D h eine gerde Funtion ist (wegen h( x = cos( x = cos( x = h(x für lle x (,, gilt b = für lle N. Für N ist = Zweimlige prtielle Integrtion liefert I := cos( x cos(x dx h(x cos(x dx = = [ sin( x cos(x] x= = ( cos( + cos( + cos( x cos(x dx. sin( x( sin(x dx sin( x sin(x dx = 4( + ( [ cos( x sin(x] x= = 4( + 4 I. cos( x( cos(x dx Somit hben wir die Gleichung I = 4( + 4 I ; dies bedeutet I = 4( /( 4. Dmit ennen wir = I / und es ergibt sich die Fourierreihe von h in reeller Form + 4( ( 4 cos(x. = Hierus nn mn die Fourieroeffizienten ĥ( berechnen ĥ( = ib = = ( ( 4 und ĥ( = + ib wobei b :=, N. Dher lutet die Fourierreihe von h in omplexer Form Aufgbe 3 = Für die Fourieroeffizienten c n von f gilt c n = f(xe inx dx = ( Für n = ergibt sich wegen e ix = c = ( [αx ] [ βx + ( ( 4 eix. und für n liefert prtielle Integrtion xe inx dx = xe inx e inx in xe inx dx = in in Für lle n folgt dmit [ ( ix c n = α n + n ] = α n α ( i n + n = = ( ( 4, αxe inx dx + βxe inx dx, n Z. = ( α + β (β α =, 4 ] [ ( ix e inx + β x= e in + β ( e inx ix ( in = n + n e inx. n + n ( i n + n e inx ] x= e in β n, 4

5 wegen e in = e in = ( n lso = (α β( ( n n + ( n (α + βi. n Wir fssen zusmmen: (β α c =, c n = (α β( ( n 4 n + i ( n (α + β (n. n Für die Fourieroeffizienten n und b n in der reellen Drstellung der Fourierreihe von f gilt n = c n + c n und b n = i(c n c n, wegen c n = c n (nur, d f reellwertig! lso n = c n + c n = Re c n und b n = i(c n c n = Im c n. Dmit folgt = Re c = (β α/ und n = (α β( ( n n, b n = ( n (α + β n (n N. b Die Fourierreihe von f ist genu dnn eine reine Sinusreihe, wenn n = für lle n N sind, wenn lso α = β gilt. Alterntiv: Die Fourierreihe von f ist genu dnn eine reine Sinusreihe, wenn f eine ungerde Funtion ist, wenn lso α = β gilt. c Die Funtion f ist -periodisch und stücweise gltt, dher wird sie in llen Stetigeitsstellen durch ihre Fourierreihe drgestellt, in Sprungstellen dgegen onvergiert die Fourierreihe gegen den Mittelwert des lins- und des rechtsseitigen Grenzwerts (vgl. Stz in 8.8. Ist α = β, so ist f uf gnz R stetig, d. h. die Funtion wird uf gnz R durch ihre Fourierreihe drgestellt. Ist dgegen α β, so ht f in den Punten x = ( + ( Z Sprungstellen mit f(x + = f(x = α β = f(x, ist sonst ber stetig. Dher wird in diesem Flle f nur in den Punten x R \ { ( + : Z } durch ihre Fourierreihe drgestellt. In den Punten x onvergiert die Fourierreihe gegen (f(x + + f(x = (β α f(x. Aufgbe 4 Eine reine Cosinusreihe ergibt sich für gerde Funtionen; lso setzen wir f zu einer periodischen, gerden Funtion F : R R fort: { x F (x :=, x [, ], x, x (,, F (x + := F (x. Für die Fourieroeffizienten und b von F gilt dnn b = und = F (x cos(x dx = F (x cos(x dx = Es ist = (x dx = [ x x] = ( x cos(x dx = x sin(x sin(x Folglich ist für N = ( x sin(x (x cos(x dx. = und für hben wir dx = x sin(x + cos(x. + cos(x cos(x dx = x= (. Ds bedeutet n = und n+ = 4/((n + für jedes n N. D F stetig und stücweise gltt ist, stellt die Fourierreihe die Funtion F uf gnz R dr, es gilt lso x = n= 4 (n + cos((n + x für lle x [, ]. 5

6 b Eine reine Sinusreihe erhlten wir, wenn wir f zu einer ungerden Funtion F : R R fortsetzen: x, x (,, F (x := x = oder x = F (x + := F (x. x +, x (,, Dnn gilt = für lle N und b = F (x sin(x dx = für lle N. Prtielle Integrtion liefert x sin(x dx = x cos(x cos(x + und es folgt b = ( x cos(x + sin(x = ( + cos(x x= F (x sin(x dx = x= dx = x cos(x sin(x dx = ( + ( (x sin(x dx + sin(x, = ( + Also ist b n = und b n = /n für lle n N. D F stücweise gltt ist, wird die Funtion F in llen Stetigeitsstellen durch ihre Fourierreihe drgestellt; wir erhlten lso x = sin(nx für lle x (,. n n= In den Stellen x = onvergiert die Fourierreihe gegen (F (++F ( = ( + =. Aufgbe 5 Setzen wir in die Drstellung us 4 b x = /4 ein, so ergibt sich 4 = n sin(n/ = n= Die erste Reihe ht lso den Wert /4. Setzen wir in die Drstellung us 4 x = ein, so ergibt sich = 4 (n + = 4 ( n= Die zweite Reihe ergibt lso /8. Aufgbe 6 Annhme: Es gibt eine -periodische, über [, ] integrierbre Funtion f : R C mit reellen Fourieroeffizienten = ( N und b = ( N. Die Besselsche Ungleichung besgt = ˆf( f = f(x dx <. Dher folgt wegen ˆf( =, ˆf( = ( ib = i und ˆf( = ( + ib = i N > = ˆf( = lim K K = K ˆf( = lim K = K ( ˆf( + ˆf( = lim. K K = (für lle d.h. die Konvergenz der hrmonischen Reihe. Dies ist ein Widerspruch! Deshlb existiert eine -periodische, über [, ] integrierbre Funtion, welche die Fourierreihe = besitzt. 6 sin(x,

7 Aufgbe 7 Wir zeigen zunächst für jedes R + f(x dx = f(x dx. ( Sei dzu R beliebig. Aufgrund der -Periodizität von f gilt f(x = f(x für lle x R. Dher erhlten wir mit der Substitution t = x, dt = dx + f(x dx = + f(x dx = f(t dt. Addition von f(x dx uf beiden Seiten ergibt nch den Rechenregeln für (Riemnn- Integrle + f(x dx = f(x dx + + f(x dx = f(x dx + f(x dx = f(x dx, lso (. Um die Identität + f(x dx = f(x dx für ein beliebiges R zu zeigen, ersetzen wir in der Gleichung ( durch (dies ist zulässig, weil ( j für lle R gilt und erhlten + f(x dx = Setzen wir in ( speziell =, so beommen wir f(x dx. ( f(x dx = + f(x dx ( = f(x dx. Aufgbe 8 Sei f : R C eine zweiml stetig differenzierbre und -periodische Funtion. Bezeichnen c := f(xe ix dx, Z, die Fourieroeffizienten von f, so gibt es nch dem Stz in 8.8 die Drstellung f(x = c e ix für lle x R. = D f stetig differenzierbr und -periodisch ist, gilt nch dem Drstellungsstz in 8.8 f (x = γ e ix für lle x R, = wobei γ := f (xe ix dx, Z, die Fourieroeffizienten von f sind. Zum Nchweis der behupteten Identität, müssen wir lso γ = ic für lle Z zeigen. Für Z \ {} erhlten wir mit Hilfe von prtieller Integrtion γ = f (xe ix dx = [ f(xe ix ] x= } {{ } =, d -per. Im Fll = ergibt sich wegen der -Periodizität von f γ = + f (x dx = [ ] f(x = = i c. f(xie ix dx = ic. 7

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

Mathematik für Informatiker II (Maikel Nadolski)

Mathematik für Informatiker II (Maikel Nadolski) Lösungen zum 7 Aufgbentt zur Vorlesung Mthemti für Informtier II Miel Ndolsi) Abgbe: bis Freitg, den 0Juni 0, 05 Uhr Häufungspunte ) Sei n ) eine reellwertige Folge mit Grenzwert sei b n ) eine beschränte

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

Fourierreihen. Timo Dimitriadis

Fourierreihen. Timo Dimitriadis Fourierreihen Timo Dimitridis 4.5.9 In diesem Vortrg geht es im prktischen Sinne um die Anlyse von Schwingungsvorgängen, wie sie zum Beispiel in der Physik häufig vorkommen. Oft mg es nützlich sein, diese

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt Krlsruhe Institut für Technologie (KIT) Institut für Anlysis Priv.-Doz. Dr. P. C. Kunstmnn Dr. S. Wuglter WS 13/14 Aufgbe 1 Höhere Mthemtik I für die Fchrichtung Elektrotechnik und Informtionstechnik Lösungsvorschläge

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Fur das unbestimmte Integral gilt. f(x) dx + b

Fur das unbestimmte Integral gilt. f(x) dx + b . Integrtionsregeln.. Linerität. Fur ds unbestimmte Integrl gilt (f(x) bg(x)) = f(x) b g(x),, b R... Prtielle Integrtion. Fur je zwei uf einem Intervll I = (, b) stetig differenzierbre Funktionen u und

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Fllstudien WS4 Übungsbltt 3 Musterlösung Lösung 9 (Numerierung) ) Wir berechnen mit die y mit den Kontrollpnten in umgeehrter Nummerierung zu ( ) n y c n t ( t) n ( ) n c i t n i ( t) i n i ( ) n c i t

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Analysis 3 Zweite Scheinklausur Ws 2018/

Analysis 3 Zweite Scheinklausur Ws 2018/ Anlysis 3 weite Scheinklusur Ws 8/9..9 Es gibt 8 Aufgben. Die jeweilige Punktzhl steht m linken Rnd. Die Mximlpunktzhl ist 7. um Bestehen der Klusur sind Punkte hinreichend. Die Berbeitungszeit beträgt

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt 6 Der Stz von Tylor Gleichmäßige Konvergenz Potenzreihen Der Stz von Tylor Es sei D ein Intervll, X ein Bnchrum und f : D X eine Funtion Stz Tylorsche Formel Ist f (n +)-ml stetig differenzierbr, so gilt

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Ptrizio Neff.6. Lösungsvorschlg zur 9. Husüung in Anlysis II im SS Husufge (6+8+8+8+6+8 Punkte): Berechnen Sie folgende Integrle, sofern sie existieren.

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr