Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.

Größe: px
Ab Seite anzeigen:

Download "Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt."

Transkript

1 7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum Beispiel 1: Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt. Zeit t in h Anzahl z in Tausend 8 10,1 1,4 15,6 19,6 4,3 Auswertung: z i+1 /z i 1,6 1,3 1,6 1,6 1,4 Vermutung: z(t) = ,5 t Zur Untersuchung der Langzeitwirkung eines Medikaments wurde einer Versuchsperson eine Dosis von 70 mg verabreicht und im zeitlichen Abstand von 4 h die Konzentration des Medikaments im Blut gemessen. Zeit t in d Konzentration k in mg/l 10 7, 5, 3,7,7 1,9 Auswertung: k i+1 /k i 0,7 0,7 0,71 0,73 0,70 Vermutung: k(t) = 10 mg 0,7 t l

2 Andert sich ein Bestand so, dass er sich in gleichen Zeiteinheiten stets um den gleichen Faktor vergrößert bzw. verkleinert, dann spricht man von exponentiellem Wachstum. Der Bestand b in Abhängigkeit von der Zeit t ist dann gegeben durch b(t) = b 0 a t Dabei ist b 0 der Bestand zur Zeit t = 0 und b(t) der Bestand zur Zeit t. a heißt Wachstumsfaktor. Ist a > 1, dann nimmt der Bestand zu, ist 0 < a < 1, dann nimmt der Bestand ab (Zerfall). Der relative Zuwachs pro gewählter Zeiteinheit ist dann gegeben durch b 0 at+1 b 0 a t und wird meist in Prozent angegeben. a 1b 0 a t = a 1 Exponentielles Wachstum bzw. exponentieller Zerfall lässt sich auch mit der natürlichen Exponentialfunktion beschreiben b(t) = b 0 a t ln lnb(t) = ln b 0 a t = lnb 0 + lna t = lnb 0 + t lna b(t) = e lnb 0 +t lna = b 0 e lna t = b 0 e k t mit k = lna. Das exponentielles Wachstum bzw. der exponentielle Zerfall eines Bestandes b lässt sich durch Funktionen der Form b(t) = b 0 e k t beschreiben. Dabei ist k = lna mit dem Wachstumsfaktor a und heißt Wachstumskonstante.

3 Bemerkung: Die momentane Wachstumsrate bzw. Zerfallsrate ist dann gegeben durch b'(t) = k b 0 e k t = k b(t) d.h. sie ist proportional zum momentanen Bestand.

4 7. Verdoppelungs- und Halbwertszeit Ist k > 0, dann nimmt der Bestand zu - positives Wachstum. Es gibt dann eine Zeit, nach der sich der Bestand jeweils verdoppelt d.h. t D b 0 = b 0 e k t D e k td = und damit t D = ln k Verdoppelungszeit bei positvem exponentiellen Wachstum Ist k < 0, dann nimmt der Bestand ab - und - Es gibt dann eine Zeit negatives Wachstum., nach der sich der Bestand jeweils halbiert d.h. t H 1 b 0 = b 0 ek t D e k td = 1 und damit t H = ln k Halbwertszeit bei negativem exponentiellen Wachstum Bemekung: Mit der Verdoppelungszeit t D bzw. der Halbwertszeit t H lassen sich positives bzw. negatives exponentielles Wachstum auch mit den Gleichungen b(t) = b 0 t t D bzw. 1 b(t) = b0 t t h beschreiben.

5 Aufgabe in der Handreichung Das ungebremste Wachstum von Bakterien lässt sich durch A(t) = A 0 e λ t beschreiben, wobei t die Zeit, A(t) die von der Bakterienkultur zum Zeitpunkt t überdeckte Fläche und die überdeckte Fläche zum Zeitpunkt t = 0 ist. 1 λ ist eine für die jeweilige Bakterienart typische Konstante mit der Einheit (d Tag) d t in Tagen A in cm 0,70 0,81 1,18 1,64 1,95 Für eine Bakterienkultur wird die folgende Messreihe aufgenommen: a) Begründen Sie, dass sich gemäß dem Zusammenhang A(t) = A 0 e λ t eine Gerade ergibt wenn man in einem Koordinatensystem mit linearer Achsenskalierung ln A gegen t aufträgt. Zeichnen Sie nun die Wertepaare t lna aus der gegebenen Messreihe in ein derartiges Koordinatensystem und tragen Sie eine mögliche Näherungsgerade ein. Erläutern Sie, wie sich A 0 und λ aus dem Diagramm ermitteln lassen und bestimmen Sie deren Werte. A 0 zur Kontrolle : λ 0,17 1 d b) Weisen Sie nach, dass grundsätzlich für die Verdoppelungszeit T der Bakterienkultur T = ln gilt und berechnen Sie T. λ Lösung a) lna = lna 0 + λ t Gleichung einer Geraden mit der Steigung λ und dem y-abschnitt lna 0

6 lna = 0,17 t + 0,7 λ ist die Steigung der Geraden und lna 0 = 0,7 A 0 = e 0,7 0,5 b) A 0 = A 0 e λ T e λ T = T = ln λ T = Extremwertaufgaben Bespiel 1: Welche zwei Zahlen mit der Summe 10 haben das a) kleinste b) größte Produkt? Hauptbedingung: P(x; y) = x y Nebenbedingung: x + y = 10 y = 10 x Zielfunktion: f(x) = x (10 x) Extremstellen: f '(x) = 10 x = 0 x = 5 y = 5 f ''(x) = < 0 a) x = y = 5 ergibt den größten Produktwert. b) Der Produktwert kann beliebig klein werden.

7 Bespiel : Der Fläche zwischem Graphen der Funktion f : x 4 e x und der x-achse wird ein Rechteck mit möglichst großem Inhalt einbeschrieben. Wie groß ist der Flächenhalt dieses Rechtecks? Hauptbedingung: Nebenbedingung: A(x; y) = x y mit x, y > 0 y = 4 e x Zielfunktion: g(x) = x 4 e x = 8x e x Extremstellen: g '(x) = 8 e x + 8x e x ( x) = x = 0 x = 1 1 Montonie: < x < 1 1 < x < 1 < x < f '(x) + 1 Der maximale Flächeninhalt ist gleich 4. e Beispiel 3: Einer Kugel mit dem Radius R wird ein Zylinder mit möglichst großem Inhalt einbeschieben. Bestimme das Volumen dieses Zylinders!

8 Hauptbedingung: V(r; h) = π r h mit x, y > 0 Nebenbedingung: h 4 + r = R r = R h 4 R h Zielfunktion: f(h) = π R h h = π R 4 h π h3 4 r Extremstellen: f '(x) = π R 3 4 π h = 0 h = R 3 r = R 3 Wegen k(0) = k(r) = 0 liegt ein Maximum vor. Es ergibt sich ein maximales Volumen von V max =. 3 3 π R Beispiel 4 : Von einer Kaffeesorte werden bei einem Preis von 0 für 1 kg im Monat kg verkauft. Eine Marktforschungstudie hat ergeben, dass eine Preissenkung von 0,0 je kg jeweils zu einer Absatzsteigerung von 1000 kg im Monat führen würde. Bei welchem Verkaufspreis wäre der Gewinn maximal, wenn für 1 kg Kaffee der Selbstkostenpreis 14 beträgt? Zielfunktion: g(x) = ( x) (0 0, x 14) = ( x) (6 0, x) Extremstellen: g'(x) = 1000 (6 0, x) + ( x) ( 0,) = 0 400x = 0 x = 10 Wegen g''(x) = 400 < 0 ist der Gewinn maximal, wenn man den Preis pro kg um erniedrigt. Das Lösen von Extremwertaufgaben erfolgt nach dem Schema Hauptbedingung: Berechnungsterm für zu optomierende Größe Nebendingungen: Rückführung des Problems auf eine Variable Zielfunktion: Extrema: Aufstellen der Funktion, deren Extrema gesucht sind Bestimmung der Extrem nach Art und Lage

9 Aufgabe in der Handreichung Von den im I. Quadranten liegenden Punkten der Normalparabel mit der Gleichung y = x soll derjenige Punkt E berechnet werden, für den die Entfernung zum Punkt P 0 4,5 mini- mal wird. a) Bestimmen Sie einen Term für die Entfernung eines Punktes x x ) von P und zeigen Sie, dass diese Entfernung genau dann minimal wird, wenn die Funktion r mit r(x) = x 4 8x + 4,5 mit x R ein Minimum annimmt. b) Berechnen Sie mithilfe der Funktion r die Koordinaten von E. Zur Kontrolle: E 4 c) Weisen Sie durch Rechnung nach, dass die Gerade PE ein Lot zur Normalparabel im Punkt E ist. a) Der Abstand wird maximal, wenn sein Quadrat maximal wird. Nach dem Satz des Pythagoras gilt für diesen Abstand r(x) = x + (x 4,5) = x 4 8x + 4,5 b) r'(x) = 4x 3 16x = 0 x = x = 0 x = Vorzeichenbetrachtung x < x < < x < 0 0 < x < < x < r'(x) + + Für E 4 wird der Abstand miniml. Normale in E y = 1 4 (x ) + 4 = 1 4 x + 4,5 P liegt als auf der Normalen.

10 Aufgabe in der Handreichung Eine Konservendose hat die Form eines geraden Kreiszylinders. Die Dose soll das Volumen 10 cm 3 fassen. Ihre Abmessungen sollen so gewählt werden, dass die Oberfläche minimal wird. Hauptbedingung: O = π r + π r h Nebenbedingung: π r h = V 0 Zielfunktion: f(r) = π r + π r V 0 π r = π r + V 0 r Extremstellen: f '(r) = 4π r V 0 r = 0 r = 3 V 0 π Eine Vorzeichenbetrachtung der Ableitung ergibt, dass einen Minimumm vorliegt. Für den gegebenen Zahlewert ergibt sich r 5,7 cm und Aufgabe in der Handreichung Aus rechteckigen Kunststoffplatten von 1 Meter Breite und Meter Höhe wurden Stücke abgeschnitten, wobei die Schnittkurve Teil einer Parabel mit der Gleichung y = 1,5x + 0,5 ist. Aus der Restplatte werden Rechtecke - wie in der Skizze dargestellt - ausgeschnitten. Je eine Seite des Rechtecks sollauf dem unteren bzw. auf dem rechten Rand der Platte zuliegen kommen, eine Ecke des Rechtecks soll auf derschnitt kurve liegen. 1,75 1,5 1,5 1 0,75 0,5 0,5 y a) Zeigen Sie, dass für den Inhalt eines solchen Rechtecks gilt: 0, 0 0, 0,4 0,6 0,8 1 0,5 x x

11 A(x) = 0,5 ( 3x 3 + 3x x + 1), wobei 0 x 1 ist. b) Weisen Sie nach, dass es genau eine Stelle x w gibt, an der die 1. Ableitung von A gleich Null wird. Begründen Sie weiter, dass A an der Stelle nicht extremal wird. c) Dennoch gibt es ein Rechteck mit maximalem Flächeninhalt. Welche Seitenlängen hat es? Lösung x w a) A(x) = (1 x) (1,5x + 0,5) = 0,5 ( 3x 3 + 3x x + 1) b) A'(x) = 0,5 ( 9x + 6x 1) = 0,5 (3x 1) = 0 x = 1 3 Da A streng monoton fallend ist, liegt kein Extremum vor. c) Für x = 1 erhält man das Rechteck mit dem größten Flächeninhalt. Es ist 1m lng und 0,5 m breit. Zusätzliche Aufgaben Welche gerade quadratische Pyramide mit gegeben Seitenkante Seitenkante s hat den größten Rauminhalt? Einer Halbkugel mit dem Radius R wird ein gerades quadratisches Prisma einbeschrieben. Für welche Abmessungen hat dieses Prisma den größen Rauminhalt? Einer Halbkugel mit dem Radius R wird ein Zylinder einbeschrieben. Für welche Abmessungen hat dieser Zylinder den größen Rauminhalt?

K l a u s u r N r. 1 G K M 12

K l a u s u r N r. 1 G K M 12 K l a u s u r N r. G K M 2 Aufgabe Bestimmen Sie die Ableitungsfunktion zu den folgenden Funktionen! a) f (x) (sin x) 2 (cos x) 2 b) f (x) (6 x 2 5) sin (2 x 3 + 5 x) c) f (x) 2 x 6 4 2 x 3 d) f (x) 4

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25.

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25. 6. Anwendungen der Differentialrechnung 6. Extremwertaufgben Eine Größe G hänge von mehreren Variablen ab. Wenn man sich dafür interesssiert, für welche Werte dieser Variablen die davon abhängige Größe

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor:

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor: Erkläre bitte Extremwertaufgaben... Extremwertaufgaben Sobald man verstanden hat, was ein Extremwert einer Funktion ist (ein lokales Maximum oder Minimum) stellt sich die Frage Und was mach ich damit??.

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1 Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com Dezember 05 Teil A: Ganzrationale Funktionen Aufgabe : Gegeben ist die Funktion

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Untersuchungen von Funktionen 1

Untersuchungen von Funktionen 1 Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Name, Jahr Schwierigkeit Mathematisches Thema Carola Schöttler, 2009 X Extremwertaufgaben. Zimmer im Dach

Name, Jahr Schwierigkeit Mathematisches Thema Carola Schöttler, 2009 X Extremwertaufgaben. Zimmer im Dach Carola Schöttler, 009 X Extremwertaufgaben Zimmer im Dach In der Skizze ist ein Querschnitt eines Dachgeschosses der Höhe 4,8m und Breite 8m dargestellt. In diesem Dachgeschoss soll ein möglichst großes

Mehr

Analysis Extremwertaufgaben mit geometrischer Nebenbedingung

Analysis Extremwertaufgaben mit geometrischer Nebenbedingung Analysis Extremwertaufgaben mit geometrischer Nebenbedingung Alexander Schwarz November 08 Aufgabe : Aus einem 0cm langen Draht soll das Kantenmodell eines Quaders hergestellt werden, bei dem eine Kante

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Extremwertaufgaben.

Extremwertaufgaben. Extremwertaufgaben www.schulmathe.npage.de Aufgaben 1. Von einem rechteckigen Stück Blech mit einer Länge von a = 16 cm und einer Breite von b = 10 cm werden an den Ecken kongruente Quadrate ausgeschnitten

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben ARBEITSBLATT 9 Extremwertaufgaben Gehen wir die Idee der Extremwertaufgaben gleich an einem Beispiel an: Rechtecke gleichen Umfangs haben den gleichen Flächeninhalt. Stimmt diese Aussage/ stimmt sie nicht?

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 80 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite von 6 Pflichtaufgaben Pflichtaufgabe (erreichbare BE: 0) a) Berechnen Sie auf Hundertstel

Mehr

Berufsmaturitätsprüfung 2009 Mathematik

Berufsmaturitätsprüfung 2009 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Extrem- und Wendepunkte und zeichne ein Schaubild

Mehr

AUFGABENSAMMLUNG 9. KLASSE

AUFGABENSAMMLUNG 9. KLASSE AUFGABENSAMMLUNG 9. KLASSE 1. Reelle Zahlen (1) Vereinfache soweit wie möglich. Alle Variablen sind aus R +. (a) 4a 4 a + ab a b (b) b : 7a (c) b + b + b ( 5 c 6 (d) c + ) () Schreibe ohne Wurzelzeichen

Mehr

Grundwissen 8 - Lösungen

Grundwissen 8 - Lösungen Grundwissen 8 - Lösungen Bereich 1: Proportionalität 1) Die in den Tabellen dargestellten Größen sind in beiden Fällen proportional. Entscheide, welche Art von Proportionalität jeweils vorliegt und vervollständige

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Lösungen zu Differentialrechnung IV-Extremalprobleme

Lösungen zu Differentialrechnung IV-Extremalprobleme Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

schriftlichen Klausur

schriftlichen Klausur Beispiele zur schriftlichen Klausur in Mathematik Zum Aufwärmen 1 Verschiedene Darstellungen rationaler Zahlen Die folgende Tabelle enthält in jeder Zeile jeweils dieselbe Zahl in drei verschiedenen Darstellungen:

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Quadratische Funktionen Arbeitsblatt 1

Quadratische Funktionen Arbeitsblatt 1 Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1.1

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Stufe I Problem 1 Ein Kistenproblem

Stufe I Problem 1 Ein Kistenproblem Stufe I Problem 1 Ein Kistenproblem Aus einem 40cm langen und 20cm breiten Karton soll durch Herausschneiden von 6 Quadraten eine Schachtel hergestellt werden, deren Deckel auf 3 Seiten übergreift. Wie

Mehr

e-funktionen Aufgaben

e-funktionen Aufgaben e-funktionen Aufgaben Die Fichte ist in Nordeuropa und den Gebirgen Mitteleuropas beheimatet. Durch Aufforsten wurde sie jedoch auch im übrigen Europa weit verbreitet. Fichten können je nach Standort Höhen

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

SCHRIFTLICHE MATURA 2010

SCHRIFTLICHE MATURA 2010 SCHRIFTLICHE MATURA 2010 Fach: Mathematik Klassen: 7SA Prüfer: Dr. Martin Holzer Name: Diese Arbeit umfasst 4 Aufgaben. Jede der 4 Aufgaben wird mit gleich vielen Punkten bewertet. Für die Darstellung

Mehr

(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen).

(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen). Aufgabenblatt Funktionen. Entscheide für die folgenden Zahlen, zu welcher der Mengen N, Z, Q, R sie gehören? a), b).87, c) 8, d) π, e) 0..., f) 8 g) 0.4965649648... (Tip zu g): Die Ziffern bestehen aus

Mehr

Name/Vorname:... Z. Zt. besuchte Schule:...

Name/Vorname:... Z. Zt. besuchte Schule:... KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 11. Schuljahres Mathematik Z. Zt. besuchte Schule:... Bitte beachten: - Bearbeitungsdauer 120 Minuten - Aufgabenserie umfasst

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Hilfe Beispiel 1: Lösungsskizze und Ergebnis:

Hilfe Beispiel 1: Lösungsskizze und Ergebnis: Hilfe Beispiel 1: 1. Hauptbedingung erstellen (Volumen der Schachtel) 3. Nebenbedingungen finden, Grundkanten und Höhen ausdrücken, in Hauptbedingung einsetzen -> Funktion 4. 1. Ableitung, 0 setzen ->

Mehr

Analysis Extremwertaufgaben mit funktionaler Nebenbedingung

Analysis Extremwertaufgaben mit funktionaler Nebenbedingung Analysis Alexander Schwarz November 0 Aufgabe : Gegeben ist die Funktion mit f(x) x, x Die Abbildung zeigt ihr Schaubild. Dem Schaubild wird ein achsenparalleles Rechteck einbeschrieben, wobei der Punkt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in

Mehr

Neue Aufgaben, Oktober

Neue Aufgaben, Oktober Neue Aufgaben, Oktober 2006 2 1. Auf wie viele Nullen endet 10! und 20!? Lösung: Die Nullen ergeben sich durch Faktorenpaare, die jeweils 10 ergeben. In 10! kommt der Faktor 5 zweimal vor, der Faktor 2

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

MATHEMATIK 8. Schulstufe Schularbeiten

MATHEMATIK 8. Schulstufe Schularbeiten MATHEMATIK 8. Schulstufe Schularbeiten 1. S c h u l a r b e i t Terme Lineare Gleichungen mit einer Variablen Bruchterme Gleichungen mit Bruchtermen Der Preis einer Ware beträgt x Euro. Dieser Preis wird

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften 195 7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften In der Kurvenuntersuchung werden von einer gegebenen Funktionsgleichung ausgehend die Graphen von Funktionen auf ganz bestimmte

Mehr

Dritte Schularbeit Mathematik Klasse 7A G am

Dritte Schularbeit Mathematik Klasse 7A G am Dritte Schularbeit Mathematik Klasse 7A G am 31.03.2016 Wiederholung für Abwesende SCHÜLERNAME: Punkte im Basisteil: / 24 Punkte im Vertiefungsteil: /24 Davon Kompensationspunkte: /4 Note: Notenschlüssel:

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans

Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Einstufungstest Mathematik für den Vorkurs PH an der ISME Erlaubte Hilfsmittel: Formelsammlung für den Vorkurs PH, Taschenrechner ohne

Mehr

Teil A hilfsmittelfreier Teil

Teil A hilfsmittelfreier Teil Klassenarbeit GYM Klasse 10 Seite 1 Datum: Thema: Ableitungen Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: keine Teil A hilfsmittelfreier Teil Aufgabe 1: (6 Punkte) Bestimme jeweils mithilfe geeigneter

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Mathematik für Informationsmanagement WiSe 2017/2018 Übungsblatt 9. Zur Bearbeitung in der Übung am 10./

Mathematik für Informationsmanagement WiSe 2017/2018 Übungsblatt 9. Zur Bearbeitung in der Übung am 10./ Mathematik für Informationsmanagement WiSe 2017/2018 Übungsblatt 9 Zur Bearbeitung in der Übung am 10./11.01.2018 Vorlesung: Dr. Mark Steinhauer Übungen: Marco Böhm Mirjam Schön Thomas Senkowski Kevin

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Kompetenzübersicht A Klasse 5

Kompetenzübersicht A Klasse 5 Kompetenzübersicht A Klasse 5 Natürliche Zahlen und Größen A1 Ich kann eine Umfrage durchführen und die Ergebnisse in einer Strichliste und einem Säulendiagramm darstellen. A2 Ich kann große Zahlen vorlesen

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Geben Sie an, wie die Anzahl der Nullstellen einer quadratischen Funktion von den Parametern a und b der Funktion abhängt!

Geben Sie an, wie die Anzahl der Nullstellen einer quadratischen Funktion von den Parametern a und b der Funktion abhängt! Aufgabe 3 Quadratische Funktion und ihre Nullstellen Gegeben ist eine quadratische Funktion f mit der Gleichung f(x) = a x 2 + b mit a 0 und a, b. Skizzieren Sie den Graphen einer möglichen quadratischen

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr