7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

Größe: px
Ab Seite anzeigen:

Download "7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)"

Transkript

1 Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a<<b Die Funktion f = f) ist in einem Punkt es Intervalls ifferenzierbar, wenn er Grenzwert f ) = lim 0 f + ) f), eistiert; er Grenzwert f ) es Differenzenquotienten heißt Differentialquotient oer Ableitung von f im Punkt Der Differenzenquotient ist ie Steigung er Sekante, ie beim Grenzübergang 0 zur Tangente wir, eren Steigung urch en Differentialquotienten gegeben ist Wenn ie Funktion f) in einem Punkt ifferenzierbar ist, so ist sie auch stetig Für ie Ableitung f ) einer Funktionf) schreibt man auch f / Das Differential er Funktion = f) ist = f ) Zur Kontrolle er Berechnung einer analtischen Ableitung f ) urch eine numerische Rechnung ist ie Näherung nützlich f ) f + ) f ) 2 f) f) f) f 0 ) f 0 ) fb) fa) a 0 b fb) fa) a b Differenzenquotient zum Mittelwertsatz 30

2 Erste Ableitungen elementarer Funktionen = f) = f ) = f) = f ) 1 1/ 1/ / 2 2/ 3 n n n 1 1/ n n/ n+1 e e ln 1/ a a ln a log a 1/ ln a) sin cos arcsin cos sin arccos 1/ 1 2 1/ 1 2 tan 1/ cos 2 arctan 1/1 + 2 ) cot 1/ sin 2 arccot 1/1 + 2 ) sinh cosh arsinh cosh sinh arcosh 1/ / 2 1 tanh 1/ cosh 2 artanh 1/1 2 ) coth 1/ sinh 2 arcoth 1/ 2 1) Die Differenzierbarkeit an einem Punkt 0 ist gleichbeeuten mit er Approimierbarkeit er Funktion f) urch einen linearen Ausruck f) f 0 )+f 0 ) 0 ), wobei f 0 ) ie Ableitung von f) bei = 0 beeuten soll Genauer schreibt man: f) =f 0 )+f 0 ) 0 )+o 0 ); abei ist o ) einausruck,ermit gegen Null geht s a Talorsche Formel, Abschn 83) Der Ausruck o ) steht für eine Funktion ϕ ) mit er Eigenschaft: ϕ ) lim =0 0 Höhere Ableitungen: Die zweite Ableitung f ) ist efiniert als ie Ableitung er ersten Ableitung von f), für höhere Ableitungen ist entsprechen zu verfahren Als Bezeichnungen sin üblich, wenn ): 2 2, 3 3, n) n oer,, n) oer ) 2, ) 3 ) n), Aus formalen Grünen wir gelegentlich ie nullte Ableitung eingeführt: 0) = Mittelwertsatz er Differentialrechnung: Ist eine Funktion f) für a b stetig un eistiert ie Ableitung in iesem Intervall, so gibt es wenigstens ein 0 mit a< 0 <b,für as gilt: fb) fa) b a = f 0 ) Etrema: Notwenige Beingung für ein Etremum einer Funktion f), ie an er Stelle 0 als ifferenzierbar vorausgesetzt wir, ist f 0 )=0Für f 0 ) < 0 liegt ein Maimum vor, für f 0 ) > 0 ein Minimum Bei f 0 )=0müssen ie höheren Ableitungen untersucht weren; bei f 0 ) 0ist 0 ein Wenepunkt

3 72 Differentiationsregeln Proukte un Quotienten Die Funktionen u = f) un v = g) seien für a<<befiniert Dann gilt für jees aus em Intervall, für as u un v eistiert: u v) = uv + vu Prouktregel ) 1 = v u ) v v 2 = vu uv v v 2 v 0 Quotientenregel Formeln für höhere Ableitungen erhält man urch mehrfache Anwenungen er Formeln, zum Beispiel: u v) n) = u n) v + nu n 1) v + u v) = u v + uv u v) = u v +2u v + uv u v) = u v +3u v +3u v + uv u v w z nn 1) u n 2) v n r ) u v ) u = w z u + v v w w z z ) u n r) v r) + + uv n) Für ie Ableitung es Quotienten zweier Proukte folgt aus er Quotienten- un Prouktregel ie Formel: ) Kettenregel Die Funktion h) =fg)) ist aus en Funktionen = g) un f) zusammengesetzt: h = f g Wenn bei einem gegebenen ie Ableitung / = g/ = g ) eistiert un bei em entsprechenen ie Ableitung f / = f ) eistiert, ann gilt für ie Ableitung von h nach : h = f )g ) = f Das Differential von h, ausgerückt urch, isth = f ) un as Differential von g, ausgerückt urch, ist = g = g ) Aus er Kettenregel folgt: h = f ) = f )g ) für as Differential h, ausgerückt urch In Differentialen können unabhängige un abhängige Variable gleich behanelt weren So folgt zum Beispiel für = f) aus = f ) ie Ableitung er Umkehrfunktion f 1 von f: = 1 f ) Für parametrische Gleichungen = ft), = gt) folgt: f ) 0 = g t) f t) 0 f t) Logarithmische Ableitung Aus er Kettenregel folgt speziell für w = hu) =lnu un u = u) : ln u = ln u u u = 1 u oer kurz: lnu) = u u u Ableitung einer impliziten Funktion Die Funktion = f) sei urch ie Gleichung F, ) =0 efiniert Dann ergibt sich aus er partiellen Differentiation nach un : F + F =0 = F F

4 73 Grenzwert einer Funktion mit nicht efiniertem Wert Führt ie Bilung es Grenzwerts einer Funktion f) = ϕ) zu einem nicht efinierten Ausruck er Form ψ) ϕ) lim a ψ) = 0 0 oer zu ϕ) lim a ψ) =, so erhält man en Grenzwert über ϕ) lim a ψ) = lim ϕ ) a ψ ) Regel von Bernoulli - e l Hospital) Falls anere nicht efinierte Ausrücke auftreten, kann urch geeignete Substitution iese Form immer erreicht weren: F unktion unef Grenzw Substitution ϕ) κ) 0 κ) =1/ψ) κ) λ) κ) =1/ψ); λ) =1/ϕ) λ) ψ) ; λ>0 0 0, 0, 1 λ) =epϕ)) 74 Vektorwertige Funktionen Die Ableitung einer vektorwertigen Funktion r = rt) eines skalaren Parameters t ist efiniert urch r = lim t 0 rt + t) rt), t wenn er Grenzwert unabhängig von er Folge t 0eistiert Die Ableitung, ie auch in er Form r =,, z ) rt) r rt + t) geschrieben weren kann, ist selbst wieer ein Vektor un ist tangential zur Kurve gerichtet, ie urch rt) beschrieben wir Höhere Ableitungen sin entsprechen efiniert Wenn eine Bahnkurve urch eine vektorwertige Funktion rt) beschrieben wir un er Parameter t ie Zeit beeutet, so sin ie ersten beien Ableitungen Ableitungen nach er Zeit weren gelegentlich urch Punkte bezeichnet): rt) = ẋt), ẏt), żt)) Geschwinigkeitsvektor 2 rt) 2 = ẍt), ÿt), zt)) Beschleunigungsvektor Regeln für ie Ableitung vektorwertiger Funktionen at)+ ) bt) a b ) = a + b = a b + a b = a b + a b a ) b Prouktregeln ft) at)) = f t) a + ft) a ) at) = 1 a ft) f f f 2 a Quotientenregel ft) 0)

5 Folgerung: ie Ableitung einer vektorwertigen Funktion at) mit konstantem Betrag a a = const) steht senkrecht zu a oer verschwinet): Raumkurven a a a a) = a a + a =2 a =0 Eine glatte Raumkurve wir urch eine stetige un stetig ifferenzierbare vektorwertige Funktion rt) beschrieben Die Ableitung r/ zeigt jeweils in ie tangentiale Richtung Für geometrische Betrachtungen ist er Begriff er Bogenlänge geeignet Für ie Ableitung einer Raumkurve rs) nach em Parameter Bogenlänge s gilt: r s = u T u T = Einheitsvektor in tangentialer Richtung u T s 0 ) u T s 0 ) s r ϕ u T r s 0 ) r s 0 + s) ϕ ρ r s) Aus er Kettenregel folgt: rst)) Für ie ifferentielle Änerung von u T gilt: = r s s = u T s u T = ϕ u T, Für infinitesimale Winkel ϕ steht u T senkrecht auf u T Wegen ρϕ = s wir ie Ableitung es Einheitsvektors u T nach s: u T s = u T ρϕ = 1 ρ u N = κ u N mit u N = u T ϕ Darin ist u N ein Einheitsvektor in er Kurvenebene senkrecht zu u T in Krümmungsrichtung un ρ =1/κ er Krümmungsraius er Raumkurve κ =Krümmung) Durch u B = u T u N kann ein weiterer Einheitsvektor u B efiniert weren, er mit en beien aneren Einheitsvektoren ein orthogonales Rechtssstem bilet, as begleitenes Dreibein genannt wir Es gilt: u B s = u T s u N + u T u N s = u T u N s = τ u N Die Größe τ heißt Torsion un 1/τ Winungsraius er Raumkurve Die Torsion einer Kurve im Punkt P gibt an, in welchem Maß ie Kurve in er Umgebung von P von einer ebenen Kurve abweicht

6 75 Funktionen mehrerer Veränerlicher Skalare Funktionen von zwei Veränerlichen Eine Funktion f, ) von zwei Veränerlichen un wir betrachtet Die partiellen Ableitungen von f, ) nach en Veränerlichen un sin efiniert urch: = lim f +, ) f, ) 0 = lim f, + ) f, ) 0 0 F ξ Steigung er Tangente mit = const an P : fξ+, =ξ,= 0 = lim 0) fξ, 0) 0 P Schnittfläche = 0 Die partielle Ableitung nach einer Veränerlichen ist also nichts aneres als ie gewöhnliche Ableitung nach er einen Veränerlichen bei Festhalten er aneren Es gelten Rechenregeln wie für ie gewöhnlichen Ableitungen Höhere partielle Ableitungen sin entsprechen er gewöhnlichen Ableitungen) urch wieerholte Bilung er partiellen Ableitung zu erzeugen Höhere Ableitungen, ie sich nur urch ie Reihenfolge er Ableitungen nach verschieenen Variablen unterscheien, sin bei Stetigkeit gleich, zum Beispiel: 2 f = 2 f Partielle Ableitungen weren auch wie folgt geschrieben: = f 2 f = f etc Totale Ableitung un totales Differential Gegeben sei eine Funktion f, ), bei er = t) un = t) Funktionen eines Parameters t sin Zur Bilung er Ableitung von f nach t wir er Differenzenquotient betrachtet: f t + t),t + t)) f t),t)) t = f +, + ) f, ) t = = f +, + ) f, + )+f, + ) f, ) t f +, + ) f, + ) f, + ) f, ) + t t

7 Im Limes t 0 gehen auch 0 un 0, un man erhält ie totale Ableitung von f nach t: f, ) f f t),t)) = = + f Den Ausruck f = + nennt man totales Differential Anschaulich beeutet f ie Änerung von f bei Änerung s von um un von um f +, + ) f, ) Funktionen von n Veränerlichen Betrachtet wir eine skalare) Funktion f 1, 2, n )vonn Veränerlichen Ist ein beliebiger Weg s im Raum 1, 2, n gegebenen, so beschreibt s = 1, 2, n ) ein Element auf iesem Weg Das totale Differential f = n 1 2 n liefert ann ie Änerung von f längs es Wegelements an einer gegebenen Stelle F n F F G G G Höhenkarte einer Mule G, ) Die Linien verbinen ie Orte mit G, ) =const Mit er Definition es Graienten, urch ie vektorwertige Funktion gra f =, ),, 1 2 n ergibt sich as totale Differential als Skalarproukt f =graf s

8 Die Einführung es Differentialoperators Nabla) ) =,, 1 2 n gestattet ie Schreibweise gra f = f In manchen Lehrbüchern finet man auch ie smbolische Schreibweise f/ s anstelle von f Funktionalmatri Betrachtet weren nun Funktionen f 1 ),f 2 ),f m ), ie zu einem Vektor f ) zusammengefaßt weren können Ist ie vektorwertige) Funktion f urch einen linearen Ausruck approimierbar, erhält man: f ) = f 0 )+J f 0 )+o 0 ) mit einer m n Matri J f Voraussetzung ist, aß f im Punkt 0 stetig ist un aß alle Komponenten f i von f nach en j partiell ifferenzierbar sin mit i j =J f ) ij = 0 Man nennt ie Matri J f, J f = m 1 m 2 1 n 2 n m n ie Funktionalmatri oer Jacobi-Matri von f im Punkt 0 Kettenregel Die Funktion h sei aus er Funktion = g ) un er Funktion f ) zusammengesetzt, un liefere eine Abbilung R n R m R k : h = f g h ) = f g )) Dann gilt für ie Funktionalmatri J h er Funktion h ) un ie Spalten- un Zeilenzahlen er Funktionalmatrizen: J }{{} h = J f J g }{{}}{{} k n k m m n Umkehrabbilung Die Funktion f ) sei ie Umkehrfunktion er Funktion = g ):, R n Dann folgt aus er Kettenregel: f g )) = mit J f J g = E J f =J g ) 1 E = Einheitsmatri)

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

4 Differentialrechnung in einer Variablen

4 Differentialrechnung in einer Variablen 4 Differentialrechnung in einer Variablen Die Infinitesimalrechnung ist ein weiteres großes analytisches Konzept, ohne das moderne Naturwissenschaften undenkbar sind. Die Entwicklung erfolgte unabhängig

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

5. Differentialrechnung

5. Differentialrechnung Prof. Dr. Wolfgang Konen Mathematik, WS6 7..6 5. Differentialrechnung 5.. Wozu Informatikerinnen Differentialrechnung brauchen In vielen technischen Problemen interessiert man sich für die momentane Steigung

Mehr

Stetigkeit und Differentation von Funktionen einer Veränderlichen

Stetigkeit und Differentation von Funktionen einer Veränderlichen KAPITEL 6 Stetigkeit un Differentation von Funktionen einer Veränerlichen. Funktionengrenzwerte.. Grenzwerte. Gegeben sei I R ein Intervall, a I {, } un f : I\{a} R. Die Funktion f kann sehr wohl auch

Mehr

Experimentalphysik I (EP I): Mathematische Ergänzungen

Experimentalphysik I (EP I): Mathematische Ergänzungen Experimentalphysik I (EP I): Mathematische Ergänzungen Prof. Dr. Niels e Jonge INM - Leibniz Institut für neue Materialien Experimentalphysik, Universität es Saarlanes Email: niels.ejonge@mx.uni-saarlan.e

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 2016 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar ist oer

Mehr

A. Zentrale Grundlagen

A. Zentrale Grundlagen Differentialrechnung 1 Differentialrechnung A. Zentrale Grunlagen Die RC-Theorie beruht in weiten Teilen auf Anwenungen er Infinitesimalrechnung, weshalb funamentale Kenntnisse er Konzepte un Regeln er

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

HAW Hamburg, Dept.: M+P VKA Prof. Dr.-Ing. Victor Gheorghiu

HAW Hamburg, Dept.: M+P VKA Prof. Dr.-Ing. Victor Gheorghiu Brennverlauf mit einer einzigen Vibe-Funktion ( ) m V+ Die Vibe-Funktion hat folgenen Ausruck ξ e a V χ ( ) Hierin beeuten: ξ exp a V ( χ ) m V+ Q B ξ ( 2) ie relative Brennfunktion, ie als Verhältnis

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H Ebene Kurven Definition: Eine parametrisierte ebene Kurve ist eine stetige Abbildung x(t) t x(t) = y(t) eines Intervalls [a, b] nach R. Dabei heißt t [a, b] der Kurvenparameter. Beide Komponentenabbildungen

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung KAPITEL 5 Kurven im R 2 1. Kurven In der Physik und in den Ingenieurwissenschaften besteht oft das Problem die Bewegungskurve\ von Objekten zu beschreiben. Der Einfachheit halber betrachten " wir Kurven

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen 1 Hilfsmittel 1.1 Erinnerung an die Analysis 2 f : B R heißt in 0 (total) differenzierbar, wenn es eine Linearform L : R n R und eine Funktion r : B R gibt,

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

Integration. Kapitel Stammfunktionen

Integration. Kapitel Stammfunktionen Kapitel 5 Integration 5. Stammfunktionen Definition: Eine auf dem Intervall I differenzierbare Funktion F ist eine Stammfunktion der Funktion f : I R, wenn F (x) = f(x) für alle x I. Fakt : Sind F und

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr