Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe

Größe: px
Ab Seite anzeigen:

Download "Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe"

Transkript

1 Scheinklausur Höhere Mathematik Musterlösung , Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A. Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird. Eintragungen mit Bleistift oder Rotstift werden nicht gewertet. Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt. Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein: f) a e sin tan sinh arsinh d d f) a a e cos cos) ) cosh + f) b ln cos arctan cosh arcosh d d f) lnb) b Viel Erfolg! a R, b R + sin + sinh sin cos Aufgabe Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an. Name des Tutors/der Tutorin: Gruppennr.: Aufgabe Punkte) Bestimmen Sie die Werte der folgenden Reihen. k=0 ) k+ = k= k k! = + e Seite von

2 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe Punkte) Berechnen Sie die folgende Grenzwerte. + = ) cos = + ) + + = Aufgabe Punkte) Bestimmen Sie jeweils den Entwicklungspunkt z 0 und den Konvergenzradius ρ der folgenden Reihen. z 0 ρ z + ) n n= n=0 n n z ) n n)! Aufgabe 5 Punkte) Gegeben sei die Funktion Berechnen Sie die ersten zwei Ableitungen von f. f : R R: e cos). f ) = e cos) sin) f ) = e cos) sin)) cos) ) Stellen Sie das in 0 = entwickelte Taylorpolynom zweiter Stufe T f,, ) auf. T f,, ) = ) + ) Seite von

3 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 6 5 Punkte) Geben Sie die Partialbruchzerlegung an = + Berechnen Sie folgende Integrale d = ln ln + ] ln) d = ] 9 + ln) Aufgabe 7 Punkte) Bestimmen Sie alle Etrema der Funktion f : R R:, y) + y + unter Nebenbedingung g, y) = 0 mit g : R {0}) R {0}) R:, y) y. Berechnen Sie den Gradienten von f und g: grad f, y) = grad g, y) = y Bestimmen Sie alle Stellen, an denen die Funktion unter der Nebenbedingung ihre Maima und Minima annimmt, sowie die Funktionswerte an diesen Stellen. Stelle Funktionswert Typ, ) 0 relatives Maimum weil die Nebenbedingung eine nicht kompakte Menge beschreibt, können die Funktionswerte an relativen Minima größer sein als die bei den relativen Maima und das passiert hier auch!, ) 8 relatives Minimum Seite von

4 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 8 Punkte) Berechnen Sie die folgenden Integrale. Falls das uneigentliche Integral nicht eistiert, tragen Sie divergent ein. sin ) cos ) d = ] ) sin ) ln cos cos ) d = divergent Aufgabe 9 Punkte) Bestimmen Sie eine Parametrisierung C : 0, ] R der geraden Strecke vom Punkt, ) zum Punkt, ). t + Ct) =, t 0, ]. t + Berechnen Sie C t) = und die folgenden Kurvenintegrale für f : R R: u, v) u v und g : R R : u, v) u v ) C fs) d s = 9 5 C g) d = Aufgabe 0 Punkte) Für welche α R besitzt das Vektorfeld ) g : R R + R : eα y + ln y y e α y + y. ein Potential? α = Bestimmen Sie für diese α ein Potential U. U, y) = e y + ln y Seite von

5 Scheinklausur Höhere Mathematik Musterlösung , Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A. Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird. Eintragungen mit Bleistift oder Rotstift werden nicht gewertet. Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt. Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein: f) a e sin tan sinh arsinh d d f) a a e cos cos) ) cosh + f) b ln cos arctan cosh arcosh d d f) lnb) b Viel Erfolg! a R, b R + sin + sinh sin cos Aufgabe Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an. Name des Tutors/der Tutorin: Gruppennr.: Aufgabe Punkte) Bestimmen Sie die Werte der folgenden Reihen. 5) k+ k=0 k! = 5 e 5 k= k = Seite von

6 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe Punkte) Berechnen Sie die folgende Grenzwerte. + = ) sin + = + e ) + + = Aufgabe Punkte) Bestimmen Sie jeweils den Entwicklungspunkt z 0 und den Konvergenzradius ρ der folgenden Reihen. z 0 ρ n=0 z ) n n)! z + ) n n= n n Aufgabe 5 Punkte) Gegeben sei die Funktion Berechnen Sie die ersten zwei Ableitungen von f. f : R R: e sin ). f ) = esin ) ) cos f ) = esin ) )) ) ) cos sin Stellen Sie das in 0 = entwickelte Taylorpolynom zweiter Stufe T f,, ) auf. T f,, ) = ) + ) 8 Seite von

7 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 6 5 Punkte) Geben Sie die Partialbruchzerlegung an + 5 = + Berechnen Sie folgende Integrale + 5 d = ln ln + ] ln) d = ] ln) Aufgabe 7 Punkte) Bestimmen Sie alle Etrema der Funktion f : R R:, y) + y unter Nebenbedingung g, y) = 0 mit grad f, y) = g : R {0}) R {0}) R:, y) + y. Berechnen Sie den Gradienten von f und g: grad g, y) = y Bestimmen Sie alle Stellen, an denen die Funktion unter der Nebenbedingung ihre Maima und Minima annimmt, sowie die Funktionswerte an diesen Stellen. Stelle Funktionswert Typ, ) 6 relatives Maimum weil die Nebenbedingung eine nicht kompakte Menge beschreibt, können die Funktionswerte an relativen Minima größer sein als die bei den relativen Maima und das passiert hier auch!, ) 0 relatives Minimum Seite von

8 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 8 Punkte) Berechnen Sie die folgenden Integrale. Falls das uneigentliche Integral nicht eistiert, tragen Sie divergent ein. cos ) sin ) d = ln sin ) ] cos ) sin ) d = divergent Aufgabe 9 Punkte) Bestimmen Sie eine Parametrisierung C : 0, ] R der geraden Strecke vom Punkt, ) zum Punkt, 0). t + Ct) =, t 0, ]. t Berechnen Sie C t) = und die folgenden Kurvenintegrale für f : R R: u, v) u + v und g : R R : u, v) u v ) C fs) d s = 5 C g) d = 5 Aufgabe 0 Punkte) Für welche α R besitzt das Vektorfeld ) g : R R + R : eα y + ln y y e α + y ein Potential?. α = Bestimmen Sie für diese α ein Potential U. U, y) = e y + ln y Seite von

9 Scheinklausur Höhere Mathematik Musterlösung , Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A. Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird. Eintragungen mit Bleistift oder Rotstift werden nicht gewertet. Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt. Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein: f) a e sin tan sinh arsinh d d f) a a e cos cos) ) cosh + f) b ln cos arctan cosh arcosh d d f) lnb) b Viel Erfolg! a R, b R + sin + sinh sin cos Aufgabe Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an. Name des Tutors/der Tutorin: Gruppennr.: Aufgabe Punkte) Bestimmen Sie die Werte der folgenden Reihen. k=0 ) k+ = k= k k! = + e Seite von

10 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe Punkte) Berechnen Sie die folgende Grenzwerte. + = cos ) + ln = ) + + = Aufgabe Punkte) Bestimmen Sie jeweils den Entwicklungspunkt z 0 und den Konvergenzradius ρ der folgenden Reihen. z 0 ρ z ) n n= n=0 n n z + ) n n)! Aufgabe 5 Punkte) Gegeben sei die Funktion Berechnen Sie die ersten zwei Ableitungen von f. f : R R: e sin). f ) = e sin) cos) f ) = e sin) cos)) sin) ) Stellen Sie das in 0 = entwickelte Taylorpolynom zweiter Stufe T f,, ) auf. T f,, ) = ) + ) Seite von

11 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 6 5 Punkte) Geben Sie die Partialbruchzerlegung an 8 6 = + Berechnen Sie folgende Integrale 8 6 d = ln + ln ] ln) d = ] 6 + ln) Aufgabe 7 Punkte) Bestimmen Sie alle Etrema der Funktion f : R R:, y) + y unter Nebenbedingung g, y) = 0 mit g : R {0}) R {0}) R:, y) y. Berechnen Sie den Gradienten von f und g: grad f, y) = grad g, y) = y Bestimmen Sie alle Stellen, an denen die Funktion unter der Nebenbedingung ihre Maima und Minima annimmt, sowie die Funktionswerte an diesen Stellen. Stelle Funktionswert Typ, ) 8 relatives Maimum weil die Nebenbedingung eine nicht kompakte Menge beschreibt, können die Funktionswerte an relativen Minima größer sein als die bei den relativen Maima und das passiert hier auch!, ) 0 relatives Minimum Seite von

12 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 8 Punkte) Berechnen Sie die folgenden Integrale. Falls das uneigentliche Integral nicht eistiert, tragen Sie divergent ein. sin ) cos ) d = ln cos ) ] sin ) cos ) d = divergent Aufgabe 9 Punkte) Bestimmen Sie eine Parametrisierung C : 0, ] R der geraden Strecke vom Punkt 0, ) zum Punkt, ). t Ct) =, t 0, ]. t + Berechnen Sie C t) = und die folgenden Kurvenintegrale für f : R R: u, v) u + v und g : R R : u, v) u v ) C fs) d s = 5 C g) d = Aufgabe 0 Punkte) Für welche α R besitzt das Vektorfeld ) g : R R + R : eα y + ln y y e α y + y ein Potential?. α = Bestimmen Sie für diese α ein Potential U. U, y) = e y + ln y Seite von

13 Scheinklausur Höhere Mathematik Musterlösung , Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten Erlaubte Hilfsmittel: Zwei eigenhändig handbeschriebene Seiten DIN A. Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird. Eintragungen mit Bleistift oder Rotstift werden nicht gewertet. Es wird nur die Angabe von Endergebnissen verlangt. Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt. Folgende Ableitungen, Stammfunktionen und Funktionswerte könnten hilfreich sein: f) a e sin tan sinh arsinh d d f) a a e cos cos) ) cosh + f) b ln cos arctan cosh arcosh d d f) lnb) b Viel Erfolg! a R, b R + sin + sinh sin cos Aufgabe Punkt) Bitte geben Sie den Namen Ihres Tutors bzw. Ihrer Tutorin und die Nummer Ihrer Übungsgruppe an. Name des Tutors/der Tutorin: Gruppennr.: Aufgabe Punkte) Bestimmen Sie die Werte der folgenden Reihen. ) k+ k=0 k! = e k= 5 k = Seite von

14 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe Punkte) Berechnen Sie die folgende Grenzwerte = 5 ) sin + = + ) = 5 Aufgabe Punkte) Bestimmen Sie jeweils den Entwicklungspunkt z 0 und den Konvergenzradius ρ der folgenden Reihen. z 0 ρ n=0 z + ) n n)! z ) n n= n n Aufgabe 5 Punkte) Gegeben sei die Funktion Berechnen Sie die ersten zwei Ableitungen von f. f : R R: e cos ). f ) = ecos ) sin ) f ) = ecos ) )) ) ) sin cos Stellen Sie das in 0 = entwickelte Taylorpolynom zweiter Stufe T f,, ) auf. T f,, ) = ) + ) 8 Seite von

15 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 6 5 Punkte) Geben Sie die Partialbruchzerlegung an = + Berechnen Sie folgende Integrale d = ln ln + ] ln) d = ln) ] Aufgabe 7 Punkte) Bestimmen Sie alle Etrema der Funktion f : R R:, y) + y + unter Nebenbedingung g, y) = 0 mit grad f, y) = g : R {0}) R {0}) R:, y) y. Berechnen Sie den Gradienten von f und g: grad g, y) = y Bestimmen Sie alle Stellen, an denen die Funktion unter der Nebenbedingung ihre Maima und Minima annimmt, sowie die Funktionswerte an diesen Stellen. Stelle Funktionswert Typ, ) 0 relatives Maimum weil die Nebenbedingung eine nicht kompakte Menge beschreibt, können die Funktionswerte an relativen Minima größer sein als die bei den relativen Maima und das passiert hier auch!, ) 6 relatives Minimum Seite von

16 Scheinklausur Höhere Mathematik Musterlösung , Version Aufgabe 8 Punkte) Berechnen Sie die folgenden Integrale. Falls das uneigentliche Integral nicht eistiert, tragen Sie divergent ein. cos ) sin ) d = ] ) cos ) ln sin sin ) d = divergent Aufgabe 9 Punkte) Bestimmen Sie eine Parametrisierung C : 0, ] R der geraden Strecke vom Punkt, ) zum Punkt, ). t + Ct) =, t 0, ]. t Berechnen Sie C t) = und die folgenden Kurvenintegrale für f : R R: u, v) u + v und g : R R : u, v) u v ) C fs) d s = 5 C g) d = 7 Aufgabe 0 Punkte) Für welche α R besitzt das Vektorfeld ) g : R R + R : eα y + ln y y e α + y ein Potential?. α = Bestimmen Sie für diese α ein Potential U. U, y) = e y + ln y Seite von

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31 Scheinklausur Höhere Mathematik Musterlösung 8.. 00, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 9 Summe Punkte / / / / /7 /5 / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel.0.06 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel 5. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Klausur der Modulprüfung / Diplomvorprüfung

Klausur der Modulprüfung / Diplomvorprüfung Klausur der Modulprüfung / Diplomvorprüfung für B.Sc. aer / B.Sc. mawi / Dipl. aer / Dipl. geod. / Dipl. autip Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel:

Mehr

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Höhere Mathematik II

Höhere Mathematik II PD Dr. R. Dietmann Dipl.-Math. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik II Sommer 2007 Aufgabe P. Seien S n := n k= 00k und S n := n ( ) k k=. 00k (a) Bestimmen Sie

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim . Übung zur Höheren Mathemati Abgabe: KW Aufgabe -a: Berechnen Sie die Grenzwerte der Funtionen 5 4 lim ln ln lim e lim sin lim (sin ) Aufgabe -b: Bestimmen Sie Definitionsbereich, Nullstellen, Polstellen,

Mehr

Höhere Mathematik II Ergebnisse und Hinweise zu den Gruppenübungen. Sommer 2008 = 1. (k + 3) 3 k = 3 k k k = 1 n.

Höhere Mathematik II Ergebnisse und Hinweise zu den Gruppenübungen. Sommer 2008 = 1. (k + 3) 3 k = 3 k k k = 1 n. Sommer 8 Zu Aufgabe H: (a) Diese Reihe lässt sich auf eine geometrische Reihe zurückfuhren: k 5 k k+ 5 5 k 5 3 5 k (b) Anwenden des Quotientenkriteriums liefert: a k+ k a k 3 k+ 5k (k + ) k 5 k+ (k + 3)

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Als bekannt setzen wir die folgenden 5 Ableitungen und 3 Regeln voraus: cos) = sin) n ) = n n für alle n 0 e ) =e sin) = cos) ln) = f) g))

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

III Reelle und komplexe Zahlen

III Reelle und komplexe Zahlen Mathematik für Elektrotechniker Klausur Vorbereitung Prof Dr Volker Bach, Dr Sébastien Breteaux, Institut für Analysis und Algebra Jeder Satz, der einen Namen hat, ist wichtig III Reelle und komplexe Zahlen

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Für

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppit, Dr. I. Rybak 11. Gruppenübung ur Vorlesung Höhere Mathematik Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise u den Hausaufgaben: Aufgabe H 31.

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Ferienkurs Analysis 1 für Physiker Integration - Aufgaben

Ferienkurs Analysis 1 für Physiker Integration - Aufgaben Ferienkurs Analysis für Physiker Integration - Aufgaben Jonas Funke 2.3.29-6.3.29 Bemerkung Bemerkung Es sollten zuerst die Aufgaben, die nicht mit einem * versehen sind bearbeitet werden. Die Aufgaben

Mehr

5. Differentialrechnung

5. Differentialrechnung Prof. Dr. Wolfgang Konen Mathematik, WS6 7..6 5. Differentialrechnung 5.. Wozu Informatikerinnen Differentialrechnung brauchen In vielen technischen Problemen interessiert man sich für die momentane Steigung

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 215/16 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 16.2.216, 13:3-15:3 Uhr (12 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib- und Zeichengeräte.

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

Klausur Mathematik I, 1 für Studierende der Studiengänge Elektrotechnik, Informationssystemtechnik und Mechatronik Gruppe A

Klausur Mathematik I, 1 für Studierende der Studiengänge Elektrotechnik, Informationssystemtechnik und Mechatronik Gruppe A Institut für Mathematische Stochastik Dresden, den.. Prof. Dr. Z. Sasvári Klausur Mathematik I, für Studierende der Studiengänge Elektrotechnik, Informationssystemtechnik und Mechatronik Gruppe A Hinweise:

Mehr

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Prof. Dr. H. Brenner Osnabrück WS 03/04 Analysis I Vorlesung 7 Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Nachdem wir nun rationale Funktionen integrieren können, können wir auch

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

Zwischenklausur - Wirtschaftsmathematik

Zwischenklausur - Wirtschaftsmathematik Name, Vorname: Zwischenklausur - Wirtschaftsmathematik Matrikel-Nr.: Wichtige Hinweise, bitte vor Bearbeitung lesen!!! Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2009/10 Campus Duisburg U. Herkenrath/H. Hoch, Fachbereich Mathematik Klausur Mathematik 2 09. Febr. 2010, 16:00 18:00 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml FernUNI Hagen WS 00/0 Aufgabe 1.1 Berechnen Sie jeweils die 1. Ableitung der Funktion f: 1- a) f() = e 1+ e + b) f() = (+) Aufgabe 1. Von einer Funktion f ist bekannt: (1) f ist ein Polynom. Grades ()

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Vorname: Name: Matrikel-Nr.: USB-Stick-Nr.: Abgabezeit: Uhr Rechner-Nr.: Unterschrift:

Vorname: Name: Matrikel-Nr.: USB-Stick-Nr.: Abgabezeit: Uhr Rechner-Nr.: Unterschrift: Hochschule Bochum Fachbereich Mechatronik und Maschinenbau Klausurdeckblatt Prüfung: Prüfung: GMA Dauer: 0 Minuten Datum: 08.09.04. Prüfer/ in (verantwortlich): Frohn-Schauf/Fulst. Prüfer/ in: Frohn-Schauf/Fulst

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (0) Finanzierung und Investition /5 Kruschwitz/Husmann (0) Finanzierung und Investition /5 Finanzierung und Investition Kruschwitz/Husmann (0) Oldenbourg Verlag München 7. Auflage, Kapitel

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Klausur zur HM3 (vertieft) für LRT und MaWi

Klausur zur HM3 (vertieft) für LRT und MaWi Prof. M. Eisermann Höhere Mathematik 3 (vertieft) 1. September 016 Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Studiengang:

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Schein-Klausur. Analysis 2

Schein-Klausur. Analysis 2 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer Schein-Klausur Analysis 2 28. Juli 26 2. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Höhere Mathematik II/III. Musterlösung

Höhere Mathematik II/III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II/III WiSe / Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2 Klausur (Mathematik II) - Wintersemester 0/ Name: Matrikel-Nr: EMail: (optionale Schnell-Korrektur) Aufgabe 5 6 7 8 Punkte 0 0 0 0 6 0 Als Hilfsmittel sind die von dem Lehrbeauftragten zur Verfügung gestellten

Mehr

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt:

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt: mg.odt 5..9 Klausur /I A Thema: Integralrechnung Teil A (hilfsmittelfrei). Eine Stammfunktion von f = heißt: ln ln. Die erste Ableitung der Funktion f = lautet: 8 d beträgt: '. Die Funktion f = ³ 8 ist

Mehr

Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik

Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik Prof. Dr. Reinhard Strehlow Übungsaufgaben zur Mathematikvorlesung I für den Studiengang Verfahrenstechnik Arithmetik:. Vereinfachen Sie die Ausdrücke c) a 5 a + a 4 a + + a + 6a + a + 5a + 6 ( a a b +

Mehr

Modulprüfung 2006 Klasse B 05 / B1. Mathematik

Modulprüfung 2006 Klasse B 05 / B1. Mathematik Modulprüfung 2006 Klasse B 05 / B1 Mathematik Zeit: 120 Minuten WIR1-2006/ 25 /Burgdorf/B 152 Fr 24.2.06/10.25-12.05 2 Bedingungen: Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie.

Mehr

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya Maclaurinsche Reihe 1-E1 Colin Maclaurin Colin Maclaurin (1698-1746), schottischer Mathematiker, der Erfinder der nach ihm benannten Maclaurinschen Reihe und Mitentwickler der Euler-Maclaurin-Formel. 1-E

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr