LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

Größe: px
Ab Seite anzeigen:

Download "LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie"

Transkript

1 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler Department Biologie II Telefon: Großhaernerstr. Fax: Planegg-Martinsrie 3. Übung/Lösung Mathematik für Stuierene er Biologie..07 Abgabe am vor er Vorlesung. Die Aufgaben weren in en Tutorien vom 9. un 0. November besprochen. Aktuelle Infos un Übungszettel finen Sie unter: (Nichtlineare Iterierte Abbilungen - Stabilität einer Fixpunkt-Lösung) [ P] Die nichtlineare Iterierte Abbilung x t+ = f(x t ) habe eine Fixpunkt-Lösung (x, x, x,...) t N mit x = f(x ). Um eren Stabiltät zu untersuchen, betrachten wir kleine Störungen y t = x t x. (a) Durch welche (nichtlineare) Iterierte Abbilung wir ie Zeitentwicklung von y t beschrieben? Um iese Frage zu beantworten, setzen Sie ie Iterierte Abbilung x t+ = f(x t ) in ie Gleichung y t+ = x t+ x ein un ersetzen Sie anschließen x t urch x t = x + y t. (b) Entwickeln Sie nun f(x + y t ) für kleine Störungen y t in eine Taylorreihe bis einschließlich es linearen Terms. Welche (lineare) Iterierte Abbilung erhalten Sie für y t? (c) Unter welchen Beingungen an f (x ) ist ie Fixpunkt-Lösung asymptotisch stabil, wann instabil un wann marginal stabil? () Wenen Sie Ihr Ergebnis auf ie nichtlineare Iterierte Abbilung x t+ = a x t ( x t ) an. Betrachten Sie en trivialen Fixpunkt x = 0 un (für a > 0) ie von Null verschieene Lösung. (a) y t+ = x t+ x y t+ = f(x t ) x y t+ = f(x + y t ) x (b) f(x + y t ) f(x ) + f (x )y t für y t. y t+ = f(x + y t ) x y t+ f (x )y t + f(x ) x = f (x )y t mit er zeitabhängigen Lösung y t = c [f (x )] t, c = y 0 = x 0 x. (c) Asymptotisch stabil: Für < f (x ) <. Marginal stabil: Für f (x ) =. Instabil: Sonst. () Fixpunkt x = 0: f (x ) = a ( x ) wir mit x = 0 zu f (x ) = a. Asymptotisch stabil für < a <. Für y t gilt y t+ f (x )y t = ay t. Fixpunkt x = a : f (x ) = a ( x ) wir zu f (x ) = a. Asymptotisch stabil für < a < 3. Für y t gilt y t+ f (x )y t = ( a)y t.. (Ableitungsregeln) Berechnen Sie unter Verwenung von [ P] x f(x) = ( y f (y)) (wobei y = f(x), x = f (y) un

2 y f (y) 0) ie erste Ableitung er Funktionen (a) f(x) = ln x (b) f(x) = ln( + x) (a) f : R + R, bijektiv, y f (y) = e y f (x) = /x (b) f : R + 0 R+ 0, bijektiv, y f (y) = (e y ) e y f (x) = (x+ x) 3. (Taylor-Entwicklung) [ P] Entwickeln Sie ie folgene Funktion bis zur. un 3. Ornung am angegebenen Punkt x 0. Skizzieren Sie für Beispiel (a) ie Funktion f(x) un beie Taylorreihen. (a) f(x) = x (x + ), x 0 = 0 (b) f(x) = x (x + ), x 0 = (a) un (b) f(x) = x (x + ) = x(x + x + ) = x 3 + 4x + x f (x) = 6x + 8x +, f (x) = x + 8, f (x) = Allgemeine Taylorreihe für (a) un (b):. Ornung: y(x) = (x 0 + x 0 + x 3 0) + ( + 8x 0 + 6x 0)(x x 0 ) + (4 + 6x 0 )(x x 0 ) x 0 = 0 y(x) = x + 4x x 0 = y(x) = (++)+(+8+6)(x )+(4+6)(x ) = 8+6(x )+0(x ) = 0x 4x+ 3. Ornung: y(x) = (x 0 + x 0 + x 3 0) + ( + 8x 0 + 6x 0)(x x 0 ) + (4 + 6x 0 )(x x 0 ) + (x x 0 ) 3 x 0 = 0 y(x) = x + 4x + x 3 = f(x) x 0 = y(x) = 8 + 6(x ) + 0(x ) + (x ) 3 = x + 4x + x 3 = f(x) 6 5 orginal

3 4. (Potenzreihen) Zeigen Sie, ass x ekx = ke kx gilt, inem Sie ie Potenzreihe für e kx ableiten. [ P] e x = n=0 xn x ekx = x n=0 (kx) n n=0, aher ekx = (kx) n = n=0 x un (kx) n = n= nk(kx) n = k (kx) n n= (n )! = k (kx) n n=0 = ke kx 5. (Kurveniskussion) Diskutieren Sie ie Funktionen [ P] g(x) = x x un h(x) = sin(x) cos(x) nach folgenem Schema: (a) Welche Symmetrieeigenschaften hat ie Funktion? (b) Welche Nullstellen hat ie Funktion? (c) Wie ist as asymptotische Verhalten er Funktion für x ±? () Ist ie Funktion stetig? Wie verhält sich ie Funktion an en Polstellen (falls sie welche besitzt)? (e) Bestimmen sie für g(x) un h(x) ie ersten rei Ableitungen. (f) Hat ie Funktion lokale Extrema? Wo liegen sie? (g) Hat ie Funktion absolute Extrema? Wo liegen sie? (h) Für welche x ist ie Funktion monoton steigen bzw. monoton fallen? (i) Wie ist as Krümmungsverhalten? In welchen Bereichen ist ie Funktion konvex, in welchen ist sie konkav? Wo sin Wenepunkte? (j) Skizzieren Sie ie Funktion (ohne weitere Funktionswerte zu berechne). (a) weer gerae noch ungerae (b) x 0 = 0 (c) lim x ± x x = lim x ± g(x) = x x( /x) = lim x ± x x x /x = () Polstelle bei x =, lim x + g(x) = +, lim x g(x) = limx ± x lim x ± /x = ± (e) g (x) = x x (x ) ; g (x) = (x ) 3 ; g (x) = 6 (x ) 4 (f) g (x) = 0 x E0 = 0, x E = ; g (x E0 ) = Maximum bei (0, 0); g (x E ) = Minimum bei (, 4) (g) beie Extrempunkte sin nur lokal, a ie Funktionswerte gegen ± sowohl für lim x ± als auch um ie Polstelle bei x = gehen (h) monoton fallen: 0 x < < x monoton steigen: x 0 x (i) keine Wenepunkte mit Hilfe er. Ableitung nachweisbar, ennoch wechselt ie Krümmung an er Polstelle x = : x < g (x) < 0 konkav; x > g (x) > 0 konvex ACHTUNG: Die Begriffe konkav un konvex weren in verschieenen Mathematikbüchern unterschielich efiniert. Die obige Verwenung hält sich an ie Definition im Skript.

4 (j) h(x) = sin(x) cos(x) Hinweis: Die Umformung sin(x) cos(x) = sin(x)/ (siehe Aufgabe 3a) vereinfacht ie Kurveniskussion. (a) Symmetrie: sin( x) cos( x) = sin(x) cos(x) f(x) = f( x) f(x) ist ungerae (b) Nullstellen: f(x) = 0 wenn sin(x) = 0 x = n π, n Z un cos(x) = 0 x = π/ + n π, n Z zusammen ergibt ies x 0 = π/ n, n Z (c) Proukt perioischer Funktionen Grenzwerte existieren nicht () Proukt stetiger Funktionen stetig (e) h (x) = cos (x) sin (x); h (x) = 4 cos(x) sin(x) = 4 h(x); h (x) = 4 ( cos (x) sin (x) ) = 4 h (x) (f) h (x) =! 0 cos (x) sin (x) = 0 sin (x) [ sin (x) ] = 0 sin (x) = / ± sin(x) = (/) sin(±x) = (/) ±x = arcsin( (/)) Extrema bei x E = π/4 + π/ n, n Z Einsetzen in h (x E ) = 4 cos(x E ) sin(x E ) = 4f(x E ) hat Extrema an en selben Stellen nur mit umgekehrtem Vorzeichen für n = 0 Maximum, n ungerae Minimum; n gerae Maximum. (g) ie lokalen Extrema sin auch absolute Extrema, a ie Funktion perioisch ist un gegen keine Grenzwerte konvergiert (h) h(x) ist auf en Intervallen (π/4 + π/ n, π/4 + π/ n ) mit n, n Z un n ungerae un n gerae bzw. 0, streng monton steigen un auf (π/4 + π/ n, π/4 + π/ n ) mit n, n Z un n gerae bzw. 0 un n ungerae, streng monoton fallen (i) h (x)! = 0, a h (x) = 4 h(x) erfüllt an en Nullstellen x 0 von h(x), hier hat h Extrema genauso wie h (x) nur mit jeweils umgekehrtem Vorzeichen konkav auf en Intervallen (π/ n, π/ n ) mit n, n Z un n gerae un n = n +, konvex auf en Intervallen (π/ n, π/ n ) mit n, n Z un n ungerae un n = n +. (j)

5 6. (Umgekehrte Kurveniskussion) [ P] Ein Polynom ritten Graes in er Variablen x ist z.b. f : R R mit f(x) = a + bx + cx + x 3 Ein Polynom höheren Graes wir nach emselben Schema efiniert. (a) Bestimmen Sie ein Polynom f(x) ritten Graes (wie oben) so, aß gilt: An er Stelle x = hat ie Tangente ie Steigung 4, eine relative Extremstelle ist x = 5, eine Wenestelle ist x = 0/3, eine Nullstelle ist 0. (b) Bestimmen Sie ein Polynom ritten Graes so, aß gilt: Der Punkt (0, ) liegt auf em Graphen. Die Normale zur Wenetangente hat ie Gleichung 3y x + = 0 un schneiet en Graph im Wenepunkt (, f()). (c) Bestimmen Sie ein Polynom fünften Graes, essen Graph zum Ursprung punktsymmetrisch ist, urch en Punkt (, ) verläuft un am Punkt (, 8) ein relatives Extremum hat. Hinweis: Bitte beachten Sie, wenn Sie f(x) bestimmt haben, aß Sie noch ie hinreichenen Kriterien für Extrema un Wenepunkte prüfe Zur Erinnerung: ie notwenige Beingung für einen Wenepunkt ist f (x) = 0. (a) f(x) =a + bx + cx + x 3 f (x) =b + cx + 3x f (x) =c + 6x f (x) =6 Nullstelle bei x = 0 : f(0) = a + b 0 + c = a = 0. Steigung bei x = :f () = 4 b + c + 3 = 4 () Extremstelle bei x = 5:f (5) = 0 b + c = 0 () Wenepunkt bei x = 0/3:f (0/3) = 0 c + 6 0/3 = 0 c = 0 Wenn wir ie letzte Gleichung in ie für ie Extremstelle (Gl. ) einsetzen, ann bekommen wir b = 0. Oer b = 5. In er Gleichung () für ie Steigung ist ann b + c + 3 = 5 + ( 0) + 3 = 4 8 = 4 b = 5/, c = 5, = /. Also ist Überprüfen wir nun: f(x) = 5/x 5x + /x 3. x = 5 ist Extremstelle: f (x) x=5 = (c + 6x) x=5 = (( 5) + 6 ) x = = 5 > 0 Also ein Minimum (Extremstelle mit f (x) 0). Wenestelle bei x = 0/3: f (x) x=0/3 = 6 = 3 0 x=5

6 x (b) Der Punkt (0, ) liegt auf em Graph f(0) = a =. Wenepunkt bei x = : f () = (c + 6x) x= = c + = 0 c = 6 Schnittpunkt er Normalen mit er Wenetangente (un em Graph) (3y x + ) x= =0 3y + =0 y = 0 Also ist y() = (a + bx + cx + x 3 ) x= = a + b + 4c + 8. Die Normale zur Wenetangente hat ie Gleichung 3y =x y = x 3 3 Wenn ie Normale ie Steigung /3 hat, ann hat ie Tangente Steigung 3. Hieraus folgt un über y() wissen wir y () = ( b + cx + 3x ) x= = b + c = 3 y() =a + b + 4c + 8 = 0 b + 4c + = 3 b + 4 ( 6) + = 3 a + b + 4c + 8 =0 + b = 0 Wir haben as Gleichungssystem auf folgene zwei Gleichungen reuziert: b = 3 b 6 = (I) (II) * Gleichung (I)- (II): 8 = 8 =. Wenn wir en Wert für in (I) einsetzen, bekommen wir b = 3 b = 9. Da c = 6 c = 6. Also ist y(x) = + 9x 6x + x 3 Zur Überprüfung: y (x) = 6 0 x R Also ist er Punkt (, 0) ein Wenepunkt.

7 (c) Ein Polynom fünften Graes wäre Punktsymmetrie, muss 3 4 x f(x) = a + bx + cx + x 3 + ex 4 + gx 5. Da f(x) = f( x) aufgrun er f(x) =bx + x 3 + gx 5 f (x) =b + 3x + 5gx 4 f (x) =6x + 0gx 3 sein. (Die Terme x, x 4 un ie Konstante a sin nicht punktsymmetrisch.) Wir wissen f() = ( bx + x 3 + gx 5) x= = b + + g = f( ) = (b + + 4g) = (II) f ( ) =b g = 0 Gleichung (I) - / (II) un (I)-(III): 3g =0 (I ) 5 9g = (II ) 5 (I ) + II : = 4g = g = /. In (I ): 3 (/) = 0 = 3/. Wenn wir ie Werte für g un in (I) einsetzen: b + + g = b + / 3/ = b =. Also Test: Es liegt ein Minimum (Tiefpunkt) vor. f(x) = x 3 x3 + x5. f (x) =6 3 x + 0 x3 f ( ) =9 + 0 > 0 x (I) (III)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben)

Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben) Analysis (Steckbriefaufgaben) Alexaner Schwarz August 18 1 Aufgabe 1: Bestimme jeweils en Funktionsterm. a) Der Graph einer ganzrationalen Funktion ritten Graes hat einen Tiefpunkt bei T(/) un einen Wenepunkt

Mehr

Übungsblatt

Übungsblatt Übungsblatt 13.11.018 1) Zerlegen Sie folgene gebrochen rationale Funktionen in rein reelle Partialbrüche: a) f() = + 13 + 5 6 c) h() = + 3 + 1 3 + b) g() = 3 + + 5 + 5 + 3 3 + 5 + 5 + ) Untersuchen Sie

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0.

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0. Differentialrechnung Graphen mit Flachpunkt un Wenepunkt Quelle: Akaemiebericht Theorie Es gibt Funktionen, eren zweite Ableitung eine mehrfache Nullstelle x 0 hat. Dann hat zuminest ie ritte Ableitung

Mehr

Analysis f(x) = x 2 1. (x D f )

Analysis f(x) = x 2 1. (x D f ) Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 8. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 8. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 89-8-748 Großhaernerstr. Fax:

Mehr

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung Mathematik LK M,. KA Differentialrechnung Lösung 9.05.07 Aufgae : Gegeen ist ie Funktion f (x)=ax +x+c, a,, c R,a 0 Führe eine vollstänige Funktionsuntersuchung gemäß er Liste aus em Unterricht urch. Keine

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematik 1. Klausur am 12. Februar 2018

Mathematik 1. Klausur am 12. Februar 2018 Mathematik 1 Klausur am 12. Februar 218 Aufgabe 1 (13 Punkte. Entscheien Sie, ob folgene Aussagen wahr oer falsch sin. Achtung: Für jee richtige Antwort erhalten Sie einen Punkt, für jee falsche Antwort

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

IMA II - Lösungen (Version 1.04) 1

IMA II - Lösungen (Version 1.04) 1 IMA II - Lösungen Version.04 Übungsserie Aufgabe Ableitung über Differenzenquotient Der Differenzenquotient, auch bekannt als mittlere Änerungsrate, wir gebilet urch Betrachtung von Sekantensteigungen

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

DIE ABLEITUNG FRANZ LEMMERMEYER

DIE ABLEITUNG FRANZ LEMMERMEYER DIE ABLEITUNG FRANZ LEMMERMEYER Eine Gerae y mx+b hat in jeem Punkt ieselbe Steigung m. Bei einer Parabel y x 2 agegen änert sich ie Steigung von Punkt zu Punkt. Sin zwei Punkte P (x f(x)) un Q(u f(u))

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

1 2 x x. 1 2 x 4

1 2 x x. 1 2 x 4 S. Potenzfunktionen mit rationalen Exponenten und ihre Ableitung Zuordung f(x) = x g(x) = x h(x) = x k(x) = x p(x) = x 0, q(x) = x r(x) = x s(x) = x, 6 7 Wurzelfunktionen a) f(x) = x + D = [ ; [ f '(x)

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 9.0.08 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+6+4 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Lösungen zu Aufgabenblatt 10P

Lösungen zu Aufgabenblatt 10P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 05 9. Juni 05 Lösungen zu Aufgabenblatt 0P Aufgabe (Funktionsgrenzwerte) Berechnen Sie die folgenden Grenzwerte: cos(x) x cos( x )

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure.. 7, 3. - 6. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 9 Mathemati Nichttechni - A II - Lösung Teilaufgabe. Gegeben sin ie reellen Funtionen f ( x) = x x mit IR un ID = IR. fa Der Graph einer solchen Funtion wir mit G

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Ableitungen von Funktionen

Ableitungen von Funktionen Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

Kapitel 5: Differentialrechnung

Kapitel 5: Differentialrechnung Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

3.6 Verhalten an den Polstellen

3.6 Verhalten an den Polstellen 44 Kapitel 3. Gebrochen-rationale Funktionen Beispiel 3.5.3. f(x) = 2x2 + 5 2x 1 f(0) = 2 02 + 5 2 0 1 = 5 1 = 5 3.6 Verhalten an den Polstellen Die Polstellen teilen den Graph in mehrere Teile. Da der

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung

Abiturprüfung Mathematik 13 Technik A II - Lösung GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }. Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (

Mehr

Σ / 100 P

Σ / 100 P 0. Klausur zur Vorlesung Mathematik für Naturwissenschaftler I Probeklausur Prof. Andreas Dreuw, Manuel Hodecker, Michael F. Herbst ungef. Beginn: ungef. Ende: Bitte beachten Sie die folgenden Hinweise

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

AP 2008 Analysis A1 Nichttechnik

AP 2008 Analysis A1 Nichttechnik . Gegeben ist ie reelle Funktion f k Der Graph wir mit G fk bezeichnet. (, ) x fss( k, x) 6 k +, esto steiler ie Tangente. BE. Weisen Sie nach, ass ie Tangente an G fk im Schnittpunkt mit er y-achse eine

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr